Short Communication

Loading rate and contraction duration effects on in vivo human Achilles tendon mechanical properties

Christopher McCrum\(^1,2\), Kai D. Oberländer\(^3\), Gaspar Epro\(^4\), Peter Krauss\(^4\), Darren C. James\(^4\), Neil D. Reeves\(^5\), Kiros Karamanidis\(^4\)

\(^1\)NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre\(^+\), Department of Human Movement Science, Maastricht, The Netherlands

\(^2\)Institute of Movement and Sport Gerontology, German Sport University Cologne, Germany

\(^3\)Media School, Fresenius University of Applied Science, Cologne, Germany

\(^4\)Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK

\(^5\)School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, U.K.

Corresponding author:

Christopher McCrum

Dept. of Human Movement Science, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands

Email: chris.mccrum@maastrichtuniversity.nl

Short title: Achilles tendon mechanical properties *in vivo*
Summary

Tendons are viscoelastic, which implies loading rate dependency, but loading rates of contractions are often not controlled during assessment of human tendon mechanical properties in vivo. We investigated the effects of sustained submaximal isometric plantarflexion contractions, which potentially negate loading rate dependency, on the stiffness of the human Achilles tendon in vivo using dynamometry and ultrasonography. Maximum voluntary contractions (high loading rate), ramp maximum force contractions with 3s loading (lower loading rate), and sustained contractions (held for 3s) at 25%, 50% and 80% of maximal tendon force were conducted. No loading rate effect on stiffness (25-80% max. tendon force) was found. However, loading rate effects were seen up to 25% of maximum tendon force, which were reduced by the sustained method. Sustained plantarflexion contractions may negate loading rate effects on tendon mechanical properties and appear suitable for assessing human Achilles tendon stiffness in vivo.

Keywords: Gastrocnemius muscle, M. triceps surae, tendon stiffness, tendon strain, muscle strength, ultrasonography
Tendons transfer force generated by the muscles to the bones, leading to joint rotations and movement, and therefore, tendon mechanical properties can have a large impact on movement effectiveness. The mechanical properties of the *triceps surae* muscle-tendon unit play an important role in locomotion, with the muscles providing significant propulsive force during the push-off phase of gait and the tendinous structures storing and returning elastic energy to the joint (Biewener and Roberts, 2000; Roberts, 2002), thereby affecting the efficiency of movement (Hof et al., 2002; Huang et al., 2015; Lichtwark and Wilson, 2007; Pandy and Andriacchi; 2010). Specifically, the mechanical properties of the Achilles tendon (AT) are of interest, as the stiffness or slackness of the AT greatly influences the ability of the *triceps surae* muscle-tendon unit to contribute to forward propulsion during gait. The most common method currently for assessing human tendon mechanical properties *in vivo* is synchronous ultrasonography and dynamometry, originally proposed by Fukashiro et al. (1995) and later further developed by Kubo et al. (1999), Maganaris and Paul (1999) and Maganaris (2002). However, one factor that may affect the accuracy of tendon mechanical properties assessment *in vivo* is tendon viscoelasticity.

Tendon viscoelasticity, which implies loading rate dependency (a viscous time-dependent property) of tendon tensile strain (Abrahams, 1967; Hooley et al. 1980; Fung, 1993), is generally accepted and has been shown in human lower limb tendons *in vivo* (Gerus et al., 2011; Kosters et al., 2014; Pearson et al., 2007; Theis et al., 2012). However, other studies have not found loading rate dependency in human tendons *in vivo* (Kubo et al., 2002; Peltonen et al., 2013). These differences in findings may be related to the tendon (AT or patellar) or tendon structure (tendon or aponeurosis).
analysed, due to differences in deformation characteristics between structures or tendon elongation tracking procedures, as well as other methodological differences, such as the duration and rate of loading used or the method used to account for joint movement on the measured tendon elongation during contraction (for a detailed overview of such methodological issues, see Seynnes et al. (2015)).

Many studies of in vivo tendon mechanical properties have employed ramped isometric contractions, with a gradual increase to maximum voluntary force over a number of seconds (e.g.: Arampatzis et al., 2007b; Kubo et al., 1999; Kubo et al., 2000b; Kubo et al., 2000a; Maganaris and Paul, 2002; Maganaris et al., 2004; Reeves et al., 2005; Seynnes et al., 2009). However, if a set time (e.g. three seconds) is given to reach maximum force, the absolute loading rate may differ between participants of different strengths (Kosters et al., 2014). One method that may negate such loading rate effects is to instead use isometric contractions held at multiple given submaximal force levels. This contraction method has recently been used in different forms to assess AT mechanical properties (Ackermans et al., 2016; Farris et al., 2013; Lichtwark et al., 2013; Obst et al., 2016), but the method’s effects on loading rate dependency have not been investigated.

The sustained method may negate loading rate dependency as it addresses the phase shift (due to the time-dependent viscous properties) of the reactive response of viscoelastic material (Meyers and Chawla, 1999). This can be illustrated using a simple Kelvin-Voigt model, comprised of a purely viscous damper and purely elastic spring connected in parallel (see examples of Kelvin-Voigt model application in biological tissue assessment in: Alkalay et al., 2015; Kiss et al., 2004; Tzschatzsch et al., 2014). When an external stress is applied to the model, the spring deforms while the damper
acts against the deformation, causing a time delay in the deformation. After a certain
time, the model reaches its final deformation, determined by the spring constant and the
applied stress. As well as potentially negating loading rate dependency, a constant force
held for a given time period potentially negates measurement error due to ultrasound
sampling frequency or synchronization delays between ultrasound and force data,
previously suggested by Finni et al. (2013) as limitations for measuring AT hysteresis
in vivo.

Given the potential benefits of sustained isometric contractions on in vivo tendon
mechanical property assessment, this study aimed to determine if sustained submaximal
isometric plantarflexion contractions would negate potential effects of loading rate on
AT stiffness measurements in comparison to traditionally used contractions (MVC and
ramp contraction).

Methods

Study Participants

Ten male adults (mean[SD] age: 26.5[5.5] years) participated in this study. Volunteers
with previous AT ruptures, AT injury within the last 12 months, or musculoskeletal
impairments were excluded. The study was approved by the German Sport University
Cologne ethical board and informed consent was obtained according to the Declaration
of Helsinki.

Experimental Setup and Procedure

The experimental setup used in this study has been described previously in detail
(Karamanidis et al., 2016). Briefly, the participants were seated on a custom made
dynamometer with the knee of the dominant leg fully extended and the foot of the
dominant leg positioned on the dynamometer foot plate perpendicular to the femur and
tibia (see Fig. 1Ai). A custom made brace constructed using ski bindings was attached
around the foot and the dynamometer foot plate to reduce any joint motion during
contractions.

Insert Fig. 1

The measurements began with a standardized warm-up of five minutes hopping and
stretching, 2-3 minutes of submaximal contractions guided by TEMULAB software
(Protendon GmbH & Co. KG, Aachen, Germany), and three maximal isometric
contractions to precondition the tendon (Maganaris, 2003). Following this, participants
completed three MVCs with a high loading rate, three ramp maximum force
contractions with a three second loading time (guided by visual feedback provided by
the software) resulting in a lower loading rate, and nine sustained contractions at the
same lower loading rate (also with visual feedback), held three times for three seconds
at 25%, 50% and 80% of the maximal tendon force ascertained during the MVC
protocol. The order of the ramp and sustained contractions was randomized (MVC
always first). The fact that MVC was always performed first was assumed not to affect
the results as tendon preconditioning was conducted and no acute change in the
properties would be expected as a result of further contractions within our protocol
(Maganaris, 2003). Sufficient rest was given between contractions (approximately two
to three minutes). For the MVCs, participants were instructed to produce as much force
as possible, as fast as possible. Representative ankle joint moment-time curves from one
subject across the three tasks can be seen in Fig. 1(C). All three contraction tasks were
repeated on a second day with all participants and the data were pooled for the analysis.
Assessment of Achilles Tendon Mechanical Properties

The triceps surae mechanical properties of the dominant leg were assessed during isometric plantarflexion contractions by integrating dynamometry (using three strain gauge load cells [100Hz] placed at pre-defined positions on the foot plate; Fig 1Aii) and ultrasonography (Aloka α7, Tokyo, Japan). Eight light emitting diodes (four on the lower limb and four on the force plate; Fig. 1Ai & ii) were used as active markers, whose 2D trajectories were recorded by two digital high-speed cameras (15Hz; Basler, Germany) and tracked automatically by the TEMULAB software (Karamanidis et al., 2016). The resultant ankle joint moments were calculated using inverse dynamics following compensation for moments resulting from gravitational and compression forces (Arampatzis et al., 2005; Karamanidis and Arampatzis, 2005). Reaction forces under the foot and their respective lever arms to the ankle joint centre were assessed as described previously (Karamanidis et al., 2016). AT force (N) was calculated by dividing the ankle joint moment (Nm) by the AT moment arm (m). The AT moment arm was estimated as the perpendicular distance from the ankle joint centre of rotation to the AT (Scholz et al., 2008). The m. gastrocnemius medialis (GM) tendon was examined using a 7.5MHz linear array ultrasound probe. The probe was placed longitudinally over the GM myotendinous junction with a black rubber band placed between the skin and the probe to determine any probe motion relative to the skin (as in previous work: Arampatzis et al., 2007a; Arampatzis et al., 2005). All recordings were saved at 73Hz. Tendon elongation was determined by manually tracking the GM myotendinous junction during loading (Fig. 1B). The effect of potential ankle joint angular rotation on the measured tendon elongation during contractions (Magnusson et
al., 2001) was taken into account by multiplying the estimated AT moment arm by the ankle joint angular changes during contraction. In this way, the actual tendon elongation caused by the exerted tendon force could be estimated. Tendon elongation was analysed at 25%, 50% and 80% of MVC for all three contraction types. Tendon stiffness was determined as the ratio of the increase in the calculated tendon force and the increase in the elongation from 25 to 80% of maximum tendon force (AT Stiffness\textsubscript{25-80%}). Additionally, a post hoc analysis of the slope of the force-elongation relationship from 0% to 25% of maximal tendon force was conducted (AT Stiffness\textsubscript{0-25%}; see Results and discussion section).

Statistics

The data from the two different measurement days were pooled together. The data of three participants on day two were excluded due to measurement errors, leaving 17 samples for the analysis. Normality was checked using the Shapiro Wilk test. Wilcoxon Signed Rank tests were used to assess loading rate differences between MVC and ramp. A two-way ANOVA with method (MVC, ramp and sustained) and normalized tendon force (25%, 50% and 80%) as factors was used to determine method and tendon force-related differences in AT elongation. One-way ANOVAs with contraction method as a factor were used to determine method-related differences in AT Stiffness\textsubscript{25-80%} and AT Stiffness\textsubscript{0-25%}. Homogeneity of variance was checked with Levene’s test. Significance was set at \(\alpha=0.05 \). Analyses were performed using IBM SPSS Statistics (Armonk, NY: IMB Corp.).

Results
The ankle joint moment loading rates during the MVC and ramp contractions were (mean and SD) 3181(2032) and 688(151)Nm/s, respectively (Fig. 2A; approximately 79% MVC per second and 18% MVC per second, respectively). The Wilcoxon Signed Rank tests revealed significantly (P<0.001) lower loading rates during ramp, compared to MVC. A two way repeated measures ANOVA with method and tendon force level as factors found significant method (F[1.5, 24]=15.5, P<0.001) and tendon force (F[1.4, 23]=277.5, P<0.0001) effects on tendon elongation (Fig. 2B). *Post hoc* tests with Bonferroni corrections revealed significant differences for tendon elongation between SUS and both RAMP and MVC, as well as between RAMP and MVC, for all tendon force levels (P<0.01; see Table 1). The one way ANOVA with method (MVC, ramp and sustained) as a factor found no significant effect on AT Stiffness 25-80% (Fig. 2C; MVC: 654[221]N/mm; ramp: 695[190]N/mm; sustained: 564[148]N/mm; F[2, 32]=2.5, P=0.079).

The fact that elongation, but not stiffness was significantly different between methods in the current study suggests that the change in elongation observed between methods occurred prior to the force levels used in this study (i.e. up to 25% of AT force) and that the difference in elongation remained constant between the methods thereafter, which agrees with our theory that the sustained contraction method accommodates the phase shift of the reactive response to applied force due to tendon viscoelasticity. Therefore, a *post hoc* analysis of the slope of the force-elongation relationship from 0% to 25% of maximal tendon force (AT Stiffness0-25%) was conducted in a similar manner to Lichtwark *et al.* (2013). A one way ANOVA with method (MVC, ramp and sustained) as a factor revealed a significant method effect on AT Stiffness0-25% (Fig. 2D; MVC: 190[46]N/mm; ramp: 165[43]N/mm; sustained: 150[37]N/mm; F[1.5, 24]=14, P<0.001).
Post hoc tests with Bonferroni corrections (see Fig. 2D) revealed significant differences in AT Stiffness0-25% between MVC and RAMP ($P=0.0455$), MVC and SUS ($P=0.0002$) and RAMP and SUS ($P=0.0353$).

Discussion

In the current study, we aimed to determine if sustained submaximal isometric plantarflexion contractions would negate potential effects of loading rate on AT stiffness measurements in comparison to traditionally used contractions (MVC and ramp contraction). Loading rate dependency was seen for AT elongation, as fast (MVC: mean of 3181Nm/s) and slower (ramp: 688Nm/s) loading rate contractions led to differences in elongation (Fig. 2B and Table 1). However, an effect of loading rate was not observed in AT stiffness, as no significant differences were found between MVC and ramp contractions. In order to further investigate the change in tendon elongation across methods, we conducted a post hoc analysis of AT Stiffness0-25% (Fig. 2D) in a similar manner to Lichtwark et al. (2013). We were able to confirm that, at this region of the force-elongation relationship, significant differences in the slope could be seen, confirming loading rate dependency (Fig. 2D; MVC vs. RAMP) and at least a partial negation of loading rate dependency using the sustained contraction method (Fig. 2D; SUS vs. MVC and SUS vs. RAMP). This finding seems to support our suggestion that the sustained contraction method accommodates the phase shift of the reactive response to applied force due to tendon viscoelasticity.

Despite its widespread use, a number of methodological challenges exist that may preclude the precise assessment of tendon mechanical properties in vivo, as recently
highlighted by Seynnes et al. (2015). Synchronization of ultrasound, dynamometer and computer systems is one of these challenges. Synchronization can introduce error, whereby computer processing time or the typically lower sampling frequency of ultrasound devices may introduce lag in comparison to the higher frequency force measurements (6). This has been demonstrated experimentally in the AT in vivo by Finni et al. (2013), where an artificial desynchronisation between force and ultrasound recordings (one ultrasound frame; 10ms) resulted in a 4-5% change in calculated AT stiffness, although the change was not as high when compared to AT hysteresis (9-10% change). Importantly, in vivo methodologies are limited to the loading rates achievable during voluntary contractions, which are much lower and less controllable than those possible in in vitro setups. The wide range in achieved loading rates during the MVCs in the current study (Fig. 2A) demonstrates the large variation between young, healthy participants in their ability to achieve high loading rates in vivo. The sustained contraction method on the other hand, as outlined in the current study, may well be a solution for negating measurement error due to ultrasound sampling frequency or synchronization delays between ultrasound and force data, and appears to negate the effects of loading rate dependency on the mechanical properties of the AT. With this in mind, it is worth noting that the variability in AT Stiffness was lowest for the sustained contraction (Fig. 2C). Additionally, image processing and digitizing time is greatly reduced. Finally, while not currently conducted, electromyography signals may be more repeatable when taken during sustained contractions due to the longer observation window (Rainoldi et al., 1999), which would benefit the examination of the effect of tibialis anterior co-activation on the resultant ankle joint moment during plantarflexion contractions (Mademli et al., 2004).
When interpreting the current findings, it is important to note that the AT force is estimated \textit{in vivo} using the resultant ankle joint moment. As a result, the influence of synergistic and antagonist muscles, which may differ between different loading rates and contraction types, have not been accounted for. This, in turn, may lead to errors in the tendon force-elongation relationship calculation, potentially reducing the ability to detect small changes in tendon stiffness between loading rates and contraction types.

That being said, the effect of co-contraction of the tibialis anterior, for example, is relatively low in young healthy subjects (accounting for co-contraction of the tibialis anterior results in approximately a 4% increase in the maximal ankle joint moments generated by the \textit{triceps surae} muscle-tendon unit during an MVC; Arampatzis \textit{et al.}, 2005) and therefore, a large effect on the force-elongation relationship would not be expected. It is also noteworthy that it was not possible to measure the loading rates during the sustained contractions in our protocol; however, these should have been similar to the ramp rates, as the same guidance software and settings were used. Finally, AT Stiffness$_{0-25\%}$ does not represent true tendon stiffness at this tendon force level due to the non-linearity of the force-elongation relationship and is only used to give an indication of changes in the slope of the force-elongation relationship at the different regions in general (Lichtwark \textit{et al.}, 2013). Regarding the difference in stiffness results, it is important to note that the time under load in the 0 to 25\% period differed more between the methods than during the 25 to 80\% period and that the magnitude of the change in tendon elongation was greater in the 0 to 25\% in comparison to the 25 to 80\% region for all contraction durations (MVC: 2.8mm vs. 1.9mm; ramp: 3.3mm vs. 1.6mm; sustained: 3.4mm vs. 2mm). Due to lower absolute elongation of the tendon in the
higher region of the force-length relationship, small differences between methods are more difficult to detect due to the potential measurement error of the ultrasound method. In conclusion, the current results indicate that tendon stiffness results do not greatly differ between MVC, ramp and sustained plantarflexion contractions. Within the range of loading rates used in this study, which represent those experienced in daily life, no measureable effect of loading rate on stiffness measurements was found. However, loading rate effects were seen in the force-elongation relationship up to 25% of maximum tendon force, which appeared to be reduced by the sustained contraction method. Therefore, sustained plantarflexion contractions may negate potential loading rate effects on the force-elongation relationship of the human AT in vivo and represent a valid alternative to MVC and ramp contractions.

Acknowledgements
CM was funded by the Kootstra Talent Fellowship awarded by the Centre for Research Innovation, Support and Policy (CRISP) and by the NUTRIM Graduate Programme of Maastricht University Medical Center+. The Forschungsservicestelle of the German Sport University Cologne (Hochschulinterne Forschungsförderung) also provided funding for this study.

Conflicts of interest
KDO, PK and KK have equity in Protendon GmbH & Co. KG, whose software was used for the data processing and analysis in this study. No other authors declare any conflicts of interest.
References

18

Meyers AM, Chawla KK. *Mechanical Behavior of Materials* (1999); Prentice Hall, Upper Saddle River, NJ.

Tables

Table 1. Bonferroni multiple comparisons tests for Achilles tendon elongation during MVC, ramp and sustained contraction methods

<table>
<thead>
<tr>
<th>Tendon Force Level [% max.]</th>
<th>Contraction Methods</th>
<th>Difference [mm]</th>
<th>95% Confidence Intervals of Differences</th>
<th>Adjusted P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>MVC vs. RAMP</td>
<td>-0.9663</td>
<td>-1.421 to -0.5115</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>MVC vs. SUS</td>
<td>-1.532</td>
<td>-1.987 to -1.077</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>RAMP vs. SUS</td>
<td>-0.5658</td>
<td>-1.021 to -0.1109</td>
<td>0.0097</td>
</tr>
<tr>
<td>50</td>
<td>MVC vs. RAMP</td>
<td>-0.8324</td>
<td>-1.287 to -0.3776</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>MVC vs. SUS</td>
<td>-1.623</td>
<td>-2.078 to -1.169</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>RAMP vs. SUS</td>
<td>-0.791</td>
<td>-1.246 to -0.3362</td>
<td>0.0002</td>
</tr>
<tr>
<td>80</td>
<td>MVC vs. RAMP</td>
<td>-0.7165</td>
<td>-1.171 to -0.2617</td>
<td>0.0008</td>
</tr>
<tr>
<td></td>
<td>MVC vs. SUS</td>
<td>-1.847</td>
<td>-2.302 to -1.392</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>RAMP vs. SUS</td>
<td>-1.13</td>
<td>-1.585 to -0.6755</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Figure Legends

Fig. 1. Experimental setup and methodology. (A) i: Lateral camera view of the participant and dynamometer setup; ii: position of the foot and strain gauge load cells (black circles) on the dynamometer foot plate; (B): examples of myotendinous junction tracking to examine tendon elongation using the ultrasound images at rest and at 25%, 50% and 80% of MVC force. (A) and (B) adapted from Karamanidis *et al.* (2016). (C): Representative plantarflexion ankle joint moment data of one subject for an isometric maximum voluntary contraction with a high loading rate (MVC), an isometric ramp contraction (RAMP) and isometric sustained contractions (SUS). The black circles represent the time points when the 25%, 50% and 80% MVC measures were taken for each method.

Fig. 2. *Triceps surae* muscle-tendon unit mechanical properties during maximum voluntary contractions with a high loading rate (MVC), isometric ramp contractions with a three second loading time (RAMP) and isometric sustained contractions (SUS) at force levels of 25%, 50% and 80% of maximal tendon force. Results are medians with error bars of the 95% confidence intervals. *, ** and *** represent significant contraction method differences (P<0.05, P<0.01 and P<0.001, respectively). (A): Ankle joint moment loading rates during the MVC and RAMP contractions. (B): Achilles tendon elongation at 25%, 50% and 80% of maximal tendon force during MVC, RAMP and SUS contractions at each force level. Significant method (P<0.001) and tendon force level (P<0.0001) effects were found. (C): Achilles tendon stiffness determined from 25% to 80% of maximal tendon force during MVC, RAMP and SUS contractions.
(D): Post hoc analysed Achilles tendon stiffness determined from 0% to 25% of maximal tendon force during MVC, RAMP and SUS contractions.