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This paper presents a simple, low-cost and effective method for the early diag-
nosis of stator short circuit faults. The approach relies on the combination of
an induction motor mathematical model and parameter estimation algorithm.
Kernel of the method is the efficient search for the characteristic parameters
that are indicating stator short circuit faults. However, the nonlinearity of a
machine model may imply multiple local minima of an objective function imple-
mented in the estimation algorithm. Taking this into consideration, we investi-
gate suitability of two industry-proven optimization algorithms (pattern search
algorithm and genetic algorithm) as applied in the proposed condition moni-
toring method. Experimental results show that the proposed diagnosis method
is capable of detecting stator short circuit faults and estimating level and lo-
cation of faults. The study also indicates that the proposed method is robust
to motor parameters offset and unbalanced voltage supply. Application of the
pattern search algorithm is suitable for a continuous monitoring system, where
the previous result can be used as starting point of the new search. The genetic
algorithm requires longer computation time and it is suitable for the offline
diagnostic system. It is not sensitive to starting point and achieving global
solution is guaranteed.
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1 Introduction

Induction motors are the most widespread rotating electric machines in industry due

to their efficient and cost-effective performance. An induction motor failure results

in severe damage not only to the motor itself but also to motor-related equipment

devices in an industrial plant. Consequently, motor condition monitoring is of great

necessity to detect motor faults at the early stage in order to reduce unscheduled

downtime, repair costs, and increase life span of machines.

Condition monitoring is the process of monitoring parameters that are describ-

ing condition of a machine while in operation. Through the parameters monitoring

process, motor failures can be diagnosed before irreversible damage has occurred.

The condition monitoring can be broadly categorized into two basic types: intru-

sive and non-intrusive techniques [1]. The intrusive method is complex and costly

because particular sensors and measurement equipments have to be employed to

monitor the deviation of air-gap torque [2], magnetic field [3], vibration [4] and

so on. For the non-intrusive method, the condition monitoring can be achieved by

processing of supply voltage and current signals. Therefore, the advantages of the

non-intrusive method are reduced cost and simplicity.

Motor current signature analysis (MCSA) is one of the most widely applied

non-intrusive methods. Motor operating conditions can be obtained by monitoring

stator current [5]. Induction motor faults are diagnosed by monitoring a variety

of fault signatures extracted from the current signal, such as current Park’s vec-

tor [6], current-envelope analysis [7], phase-shift analysis [8], residual saturation

harmonics [9], current residue decomposition [10], and the symmetrical component

analysis [11]. These methods are conducted in either time-domain or frequency-
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domain. Frequency-domain analysis can provide more detailed information of ma-

chine’s status and Fast Fourier Transform (FFT) spectral signature analysis is a

commonly used method [9, 11]. However, the harmonic frequency components are

too small to be detected under the low intensity fault condition, which limits ap-

plication of those methods [12]. Alternative techniques such as Zoom FFT [13],

discrete wavelet transformation [14], Teager-Kaiser Energy Operator [15] and im-

proved Hilbert method [16] have been proposed to enhance frequency resolution

and improve the performance.

The induction motors are symmetrical structures and any kind of fault will

break their symmetrical property. The change of this balance will result in the

drift of characteristic parameters, which offers a method to detect motor fault by

monitoring these parameters [12]. For example, the stator short circuit fault has

been successfully detected through the estimation of characteristic parameters from

the recorded stator current [17]. The parameter estimation technique is based on a

MATLAB/SIMULINK induction motor model and a global direct search algorithm,

named Hyperbolic Cross Points (HCP) algorithm [18]. It is worthwhile to mention

that global search algorithm has to be employed since the local search methods are

very sensitive to the selection of an initial point. The local search method might be

trapped into local minima if its start point is far from global minimum.

In this paper, the industry-proven optimization algorithms: pattern search al-

gorithm (PSA) [19] and genetic algorithm (GA) [20] are employed to monitor motor

condition. Two parameters (localization parameter and fault level) are able to char-

acterize fault conditions of the stator winding and fault diagnostic systems can be

based on the estimation of those parameters [21]. Estimation is computed by using

various algorithms for searching global minimum of the objective function. As a di-
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rect local search algorithm, the PSA is sensitive to starting (i.e. initial) point. The

algorithm might be trapped into local minima. To this end, the Latin hypercube

sampling (LHS) method [22] is utilized to generate a proper starting point for the

PSA. On the contrary, the GA is one of the artificial intelligence approaches and it

is based on the Darwin theory of evolution [20]. Although GA requires longer com-

putation time to estimate parameters, it guarantees detection of a global minimum.

We applied these two optimization algorithms to estimate parameters describing

various stator fault conditions of an induction motor under different loading levels.

The faults diagnosis also considers the offset of motor parameters and unbalanced

voltage supply. Practical results obtained in the laboratory environment by using

both PSA and GA algorithms for the stator fault diagnostic task are analyzed and

compared in terms of accuracy and computational cost.

2 Mathematical model of a stator short circuit fault in an induc-

tion motor

The stator short circuit fault in an induction motor is normally characterized by

two parameters: ηf fault level and θf fault location. The fault localization θf of

{0, 1, 2} × 2π/3 stands for Phase {a, b, c}, respectively. An induction motor model

with stator short circuit fault has been previously built based on a mathematical

model in [21, 23]. The proposed model has been validated by comparing simulated

and measured stator currents with different number of shorted turns and different

load levels. In this paper, the model has been adapted and utilized in the param-

eter estimation algorithm. For the sake of convenience, the mathematical model

of induction motor with short circuit fault is briefly described in matrix form as

follows:
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d

dt
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if

 , (2)

where

λλλabc
s , uabc

s and iabcs stator flux, voltage and current

λλλabc
r , uabc

r and iabcr rotor flux, voltage and current

λf and if short circuit flux and current

r =


rrrs 0 0

0 rrrr 0

0 0 rf

 resistance matrix

rs = rs × III stator resistance

rr = rr × III rotor resistance

rf = ηf · rs short circuit resistance

III =


1 0 0

0 1 0

0 0 1

 Identity matrix

LLLss =


Lg + Lp −Lp/2 −Lp/2

−Lp/2 Lg + Lp −Lp/2

−Lp/2 −Lp/2 Lg + Lp

 , (3)
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LLLrr =


Lp −Lp/2 −Lp/2

−Lp/2 Lp −Lp/2

−Lp/2 −Lp/2 Lp

 , (4)

Lf = η2f (Lp + Lg), (5)

where Lp and Lg are mutual inductance and self inductance referred to the stator,

respectively.

The stator, rotor and short-circuit mutual inductances can be expressed as [21],

LLLsr = Lp


cos (θr) cos (θr + 2π/3) cos (θr − 2π/3)

cos (θr − 2π/3) cos (θr) cos (θr + 2π/3)

cos (θr + 2π/3) cos (θr − 2π/3) cos (θr)

 , (6)

LLLsf = ηfLp


cos (θf )

cos (θf − 2π/3)

cos (θf + 2π/3)

 , (7)

LLLrf = ηfLp


cos (θf − θr)

cos (θf − θr − 2π/3)

cos (θf − θr + 2π/3)

 , (8)
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LLLrs = LLLT
sr, LLLfs = LLLT

sf , LLLfr = LLLT
rf , (9)

where θr is rotor angular position.

In order to reduce the number of model variables, Concordia transformation

is employed to convert from three phase quantities abc to two phase quantities αβ

coordinate. The transformation is defined as,

uα

uβ

 =

√
2

3

1 −1/2 −1/2

0
√
3/2 −

√
3/2



ua

ub

uc

 . (10)

3 Stator short circuit fault diagnosis using parameter estimation

The mathematical model indicates that a stator short circuit fault can be described

by the fault level ηf and fault localization θf . Therefore, it is feasible to detect and

locate a stator short circuit fault by using the parameter estimation method to

identify ηf and θf . The parameter estimation procedure is sketched in Fig. 1. The

proposed condition monitoring of stator windings scheme is conducted using the

SIMULINK induction motor model, developed in [23]. The model implementation

details in the SIMULINK environment will not be discussed here. In the proposed

method, the parameter values from parameter estimation algorithm are imported

to the machine model. Based on these parameters, the stator currents i′α and i′β are

generated. The generated currents i′α and i′β are compared with measured iα and iβ ,

which are converted from recorded currents ia,b,c in abc coordinates using Eq. 10.

The difference between simulated and measured currents, i.e. the cost function, is
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Figure 1. Induction motor stator winding short circuit fault detection using pa-
rameter estimation.

defined as

J =
N∑

k=1

{
[iα(k)− i′α(k)]

2 + [iβ(k)− i′β(k)]
2
}
, (11)

where N is number of samples. If J is bigger than a threshold, the selected param-

eter estimation method will generate a new set of parameters and transfer them to

the induction motor model. The process iterates until the threshold is met. The sta-

tor short circuit fault can be revealed by the estimated characteristic parameters ηf

and θf . It is worthwhile to notice that the proposed parameter estimation method

can be adapted to monitor and diagnose other faults in different types of motors

by simply changing the corresponding motor model and characteristic parameters.

The selection of parameter estimation algorithm is critical since the induction

motor model is nonlinear and the cost function might include several local minima.

In this study, the PSA and GA are employed to illustrate the proposed induction

motor fault diagnosis method. The PSA is the direct local search methods, which

does not need information on either gradient or Hessian of the objective func-

tion [19]. The PSA finds minimum by generating a sequence of points approaching

an optimal point. As the search progresses, the values of the objective function for

generated sequence of points will either decrease or keep constant. Considering a
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D-dimensional objection function f(X), the algorithm starts from an initial point

X0 = [x1, x2, ..., xD] and initial mesh of M0. The value of M0 should be a positive

scalar. In this study, the initial mesh size M0 = 1 is utilized. Sequence of search

pattern vectors are generated by either 2D or DP1 methods [19]. In the case of 2D

method, 2×D new vectors are generated, i.e.


x1

x2

...
xD

±



1
0
...
0

 ,


0
1
...
0

 ,


0
0
...
1


︸ ︷︷ ︸


D

×M0

Only D + 1 new vectors are generated in the DP1 method, i.e.


x1

x2

...
xD

+



1
0
...
0

 ,


0
1
...
0

 ,


0
0
...
1


︸ ︷︷ ︸

,


−1
−1
...
−1




D

×M0

If the smallest function value f(Xi) obtained via local search based on pattern

vectors is smaller than f(X0) (called a successful poll), the Xi is selected as central

point Xc, which is used to generate new pattern vectors with the mesh size of

Mc × FE , where Mc is the current mesh size and FE ≥ 1 is mesh expansion factor.

FE specifies the mesh size after a successful poll. In this study, the FE is set to 2,

which means that the size of the mesh is multiplied by 2 after a successful poll.

If the function values of all new generated vectors are bigger than f(X0) (called

an unsuccessful poll), the central point Xc remains the same and the mesh size is

reduced to Mc/FC , where and FC ≥ 1 is mesh contraction factor. The FC is also set

to 2, which means that the size of the mesh is divided by 2 after an unsuccessful poll.

The algorithm iterates until the stopping criterion is fulfilled. In our algorithm, the

stopping criterion is set to FunTol, i.e. the difference between the function values

of the previous and current central point is less than FunTol. As a direct search
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method, the parameter estimation result of the PSA depends on the starting point.

This is analyzed and discussed in the Section 4.

The GA is considered as a global optimization method and it is independent of

starting point [20]. The algorithm is inspired by natural evolution, such as inher-

itance, mutation, selection, and crossover. The GA starts with creating a random

initial population. The algorithm then breed a new generation based on the existing

population. The selected members, called parents, are chosen based on their fitness.

Some members with lower fitness are directly passed to the next population, named

elite. Children are generated either by mutation (random choosing a sing parent)

or crossover (combining the vector entries of a pair of parents). Then, the current

population is replaced by the new generated children. The process continues until

one of the stopping criteria is met. For the fair comparison, the stopping criterion

of the PSA and GA is set the same value of FunTol.

4 Experimental Results and Discussion

The parameter estimation case study is devised by using a three phase 800 W

induction motor with constant voltage and frequency power supply. The parameters

of the motor are tabulated in Table. 1. Fig. 2 presents a schematic diagram of the

experiment setup. Each phase of the stator winding contains 4 coils. Each coil

consists of 90 turns made of enameled wire with a diameter of 0.6 mm. In order to

make stator short circuit fault, the insulation layer of enameled wire of one coil in

Phase b is scraped and soldered with wires. These wires are connected to a switch

box which controls the stator short-circuit fault level. For example, 10% winding

short circuit fault means that 9 coil turns are shortened through the switch box.

The rotor shaft of the induction motor is attached to a DC generator as a loading.
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Figure 2. Induction motor stator winding short circuit fault detection experimental
setup.

Table 1
Induction motor parameters

Ouput power 800 W
Line voltage 380 V
Rotor inertia 0.0025 Kg m2

Rated frequency 50 Hz
Rated current 2.2 A
No load speed 1497 rpm
Number of poles 4
Rated power factor 0.74
Stator winding resistance 8.4 ohm
Stator winding reactance 10.3 ohm
Stator magnetizing reactance 137.5 ohm
Referred rotor winding resistance 8.2 ohm
Referred rotor winding reactance 10.3 ohm

The output of the DC generator is connected to a resistor. The loading level is

adjusted by a gear box. The loading level L is also estimated by the algorithm since

it is an important factor for motor condition monitoring and control. The stator

voltage and current of the induction motor are measured by the voltage transducer

LEM LV 25-P [24] and the current transducer LEM HY-15 [25], respectively. The

signals from these two transducers are recorded by the National Instruments (NI)

16-bit DAQCard-6036E PCMCIA card [26]. The sampling frequency is 10 kHz.

The stator current signals i′α and i′β are generated from the induction motor

model based on the measured voltage signals. The generated current signals are syn-
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Table 2
Boundaries of under estimated parameters

ηf Fault level [0 0.3]
θf Fault localization {0,1,2}
L Loading level [0 1]
Ts Offset time [0 0.02]
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i β
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Figure 3. The unsynchronized simulated and measured current singles due to
the measurement error. A parameter Ts is defined to synchronize simulated and
measured current singles.

chronized with the measured voltage signals. The unsynchronized measured voltage

and current signals, which can result from measurement error, leads to the time off-

set between simulated and measured current signals, as shown in Fig 3. Therefore,

an additional parameter Ts is defined to synchronize simulated and measured cur-

rents. All realistic ranges where parameter variables can vary are listed in Table. 2.

The range of fault level ηf is from 0 to 0.3, i.e. from healthy condition to 30% stator

short circuit fault in one coil. The loading level L is defined in the range from 0 to

1 (100% loading level). Since the rated frequency of the supply voltage is 50 Hz,

the offset time is adjusted within one period of 0.02 s.

The experiment data of 10% (ηf = 0.1) stator short circuit fault in Phase b

(θf = 1 × 2π/3) is employed to evaluate the proposed diagnostic technique based
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on parameter estimation. The motor is under 50% loading. The data windows is

from 0.5 to 1 s, i.e. motor reaches steady state, as shown in Fig. 3. With the sample

frequency of 10 kHz, the total data points N is equal to 5001 for both iα and iβ

in the cost function Eq.11. In the first attempt, the staring point of the PSA is set

to the left boundary of each parameter. The key parameters of PSA are discussed

as follows. The parameter CompletePoll is set to “on”, which means the algorithm

evaluates all points in the poll. If the parameter is set to “off”, the algorithm stops

once the function value of a evaluated point is smaller than that of the central point,

which will increase the risk of being trapped into local minima. Since the running

SIMULINK induction motor model takes longer time than the algorithm itself, the

points that the algorithm have already visited are stored to in the cache to avoid

being calculated again. So, the parameter Cache is set to “on”. Figs. 4(a)-(d) and (e)

show the trajectories of estimated parameters and cost function value, respectively.

The algorithm reaches the stopping criterion of FunTol = 10−5, i.e. the difference

between the function values of the previous and current central point is less than

10−5. The estimated parameters are [ηf = 0; θf = 0;L = 0.5300;Ts = 0.0001] and

the cost function value is J = 121.7344, which is far from the minimum value.

As mentioned in the previous section, the search result of PSA depends on the

starting point and it has been trapped into local minima. Thus, LHS method is

utilized to generate a starting point for PSA. The LHS is a method of sampling

that can generate points with each component close to evenly spaced [22]. The point

with the minimal value is set to the start point of PSA. Although the extra time

has been spent on evaluating points generated by the LHS method, it can reduce

the risk of being trapped into local minima. The large number of sampling points
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Figure 4. Trajectories of estimated parameters and cost function value using the
PSA with left boundary of each parameter as a starting point.

will reduce the risk and of course increase the evaluation time. This is a trade off

between accuracy and time consumption.

We use this 4 parameters estimation task as an example to illustrate the LHS

method. In order to generate 5 sampling points SP = 5 points, a matrix M1 of 5

rows and 4 columns is firstly built by combining 4 column vectors. Each column

vector has a random permutation of [1, 2, 3, 4, 5]. An example of matrix M1 is

shown below

M1 =


2 5 4 2
1 3 1 1
3 2 5 4
5 4 2 3
4 1 3 5

.

Then, the sampling points matrix MLHS is calculated by using the equation

MLHS = (M1 −Mr)/N , where Mr is a random matrix with the same size as M1.

The elements of Mr are in the range of [0, 1]. Each element of MLHS is also in the

range of [0, 1]. The five rows represent 5 new generated sampling points. Finally,

these points are rescaled to fit boundaries in Table. 2.
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Figure 5. Trajectories of estimated parameters and cost function value using the
PSA with the aid of LHS to generate a starting point.

In this parameter estimation, the total sampling points SP is 60. Within these

60 points, the point with the minimal function value is selected as the starting point

of PSA. Figs. 5(a)-(d) and (e) show the trajectories of estimated parameters and

cost function value, respectively. After the evaluation the 60 points generated by

the LHS method, the point of [ηf = 0.2045; θf = 0.1873 × 2π/3;L = 0.4086;Ts =

0.0197] is selected as the starting point of the PSA. The estimated parameters after

the PSA terminated are [ηf = 0.1046; θf = 0.9569×2π/3;L = 0.4966;Ts = 0.0020],

which is close to the experiment setup of 10% stator circuit fault in Phase b. The

total 980 points are evaluated with the minimal value of the cost function J =

66.5986. Since points in the sampling points matrix are randomly generated by LHS

method, the selected starting point might be close to local minima in a very rare

occasion. Therefore, there is still a risk of the PSA being trapped into local minima.

The risk can be reduced by increasing the number of sampling points SP . In a

continuing induction motor monitoring system, the previous parameter estimation
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result can be used as a starting point for the next search. In this case, PSA can be

directly applied in this system to shorten the parameter estimation time.

The GA is employed to estimate these parameters from the same recorded

data. The general rules to select the key parameters of the GA are discussed as

follows. The population size of each generation should be larger than number of

to be estimated parameters. The large number of population size enables more

evaluated points and thereby obtain a more accurate result. However, large number

of population size requires long computational time. As a rule of thumb, population

size is usually smaller than four times the number of searched variables to avoid

long running time [20]. In this study, the population size of 20 is utilized to have

an accurate result while maintain a reasonable computational time. The crossover

fraction (CF ) is in the range of 0 and 1, which controls that how many percent

children are crossover children. The parameter of elite count (EC ) is an integer

which specifies how many individuals in the current generation are guaranteed to

survive to the next generation. These two parameters are important to control the

standard deviation (SD) of each new generation. They are selected based on the

study of mean and SD of the cost function values J in the 10th generation, as shown

in Fig. 6. As one can observe from the figure, the small CF usually leads to large SD.

The small values of CF and EC most likely transform GA into an random search.

With the increase of EC, the curve of the mean values of cost function becomes

more flat and the SDs become smaller under various CF values. The parameters of

CF = 0.8 and EC = 10 yield the smallest mean and SD of the cost function value.

Therefore, these two parameters values are utilized in the following study. For the

fair comparison, the stopping criterion of FunTol = 10−5 is the same as that for

the PSA.
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Figure 6. The means and SDs of the cost function (J) values of the 10th generation
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Figs. 7(a)-(d) and (e) show the trajectories of estimated parameters and cost

function value, respectively. The total number of evaluated points is 1520. The more

accurate result is obtained at the cost of increased number of evaluated points. The

estimated parameters of [ηf = 0.1032; θf = 0.9798× 2π/3;L = 0.5042;Ts = 0.0002]

correctly indicate the motor state. The minimal value of the cost function is 52.4335,

which is smaller than that of PSA. The programs were implemented on a computer

with Intel i7-3770 processor (4 cores, 3.1 GHz) and 8 GB DRAM. The running times
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Figure 7. Trajectories of estimated parameters and cost function value using the
GA.
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of the PSA and GA condition monitoring procedure are 235 s and 342 s, respectively.

For both algorithms, the time for evaluating one point is about 0.23 s and the

SIMLINK model consumes about 90% of that time. Hence, the total ruining times

can be reduced by simplifying mathematical model as suggested in [27]. Although

the GA requires more computational time compared to the PSA (i.e. more evaluated

points), it guarantees robustness in parameter estimation.

The proposed method has been verified using the same three phase 800 W in-

duction motor under different combination of loading levels and inter-turn stator

short circuit fault levels in Phase b. Fig. 8 shows the comparison between exper-
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Figure 8. Comparison between experiment setup with parameter estimated results
by using PSA and GA. The stopping criterion of (a). FunTol = 10−5 and (b).
maximum cost function evaluations of 1000, respectively.
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iment setup with estimated results by using PSA and GA. For both algorithms,

the results in Figs. 8(a) and (b) are obtained by using the stopping criterion of

FunTol = 10−5 and maximum cost function evaluations of 1000, respectively. In

all parameter estimations, the fault location is successfully detected in Phase b

and is not shown in the figure. The parameter Ts is not plotted since it is only uti-

lized to calibrate the time offset. The red crosses represent the experiment setup.

The estimated results of parameters ηf and θf by using PSA and GA are indi-

cated with black diamonds and blue dots, respectively. The estimated parameters

ηf and θf have clearly indicated the motor state. Given the stopping criterion of

FunTol = 10−5, in most cases, the estimated results from GA is closer to the ex-

periment setup than these from PSA, as shown in Fig. 8(a). The evaluated points of

PSA are around 1000, while GA evaluates about 500 points more than PSA under

these combinations of loading and fault levels. In Fig. 8(b), the stopping criterion is

set to the maximum cost function evaluations of 1000, i.e. the both algorithms stop

after evaluating 1000 points. The similar results are obtained by using PSA due

to the approximately equal number of function evaluations as in Fig. 8(a). With

the limited number of function evaluations, the large value of EC or CF has to be

utilized to decrease the diversity of subsequent generations of GA. However, large

value of EC or CF might increase the value of cost function and hence the error of

estimated parameters, as shown in Fig. 6. In Fig. 8(b), the estimated parameters

from GA are obtained with the EC = 10 and CF = 1. In this case, the related

errors of estimated parameters from GA are larger than these in Fig. 8(a). The

estimated results from GA are still comparable with these from PSA.
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5 Stator short circuit faults diagnosis under variable motor pa-

rameters and unbalanced voltage supply

Motor parameters might drift from the values given in the data sheet due to the

environment factors (e.g. temperature and humidity) and working condition (e.g.

load level and alignment). In order to verify the impact of variable motor parameters

on the proposed method, the parameters of the motor are changed in the model to

generate stator current. Then, this stator current is utilized to estimate stator short

winding faults. During the fault diagnosis process, the model uses the original values

of motor parameters. Since stator winding resistance and reactance are most likely

to be affected during motor operation, these two parameters are chosen to examine

the proposed method under the low fault level of 3% inter-turn stator winding

circuit fault in Phase b. Motor load level is set to 10%. The stopping criterion of

PSA and GA is set to maximum 400 evaluated points. Figs. 9(a)-(c) show that the

deviations of the estimated parameters based on PSA linearly rise with the increase

of resistance and reactance offset. The change of stator winding resistance has more

effect on the load level estimation. Figs. 9(d)-(f) show the diagnosis results of the

combination of stator winding resistance and reactance offset. The results do not

have significant difference compared to a single parameter offset in Figs. 9(a)-(c).

In both cases, the fault can be successfully located in Phase b. The faults diagnosis

results based on GA are shown in Fig. 10. The similar results can be observed

that stator winding resistance offset has more effect on load level estimation. The

combination of offsets in two parameters does not decrease the performance of

GA. The deviations of estimated parameters from GA are larger than that from
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Figure 9. Stator winding short circuit faults diagnosis under variable stator wind-
ing resistance and reactance using PSA. (a)-(c): Estimated parameters with stator
winding resistance and reactance offset; (d)-(f): Estimated parameters with the
combination of stator winding resistance and reactance offset.

PSA. Given the limited computational time (i.e. evaluated points), PSA has better

performance than GA in term of the accuracy of estimated parameters.

Unbalanced voltage is a common disturbance in electrical systems. The unbal-

anced voltage has negative effects on both motor operation and fault diagnosis. The
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voltage unbalance factor (VUF) is defined as the ratio of positive (Vp) and negative

(Vn) sequence voltage components [28]

V UF =
Vp

Vn
× 100%, (12)
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These two components are given by

Vp =
Va + α1 · Vb + α2 · Vc

3
, (13)

Vn =
Va + α2 · Vb + α1 · Vc

3
, (14)

where α1 = 1 ̸ 120◦ and α2 = 1 ̸ 220◦. Fig. 11 shows the estimated results using

PSA and GA by considering both magnitude and phase unbalance. For example,

the V UF = 3.21% is obtained by setting three phase voltages of Va = 363 cos(ωt),

Vb = 279 cos(ωt+ ̸ 280◦) and Vc = 335 cos(ωt+ ̸ 122◦), where ω is base electrical

radians per second. The motor setting and algorithm parameters are the same as

the previous study. Fig. 11 shows that both fault level, fault location and load level

can be detected by using PSA and GA algorithm over the range of VUF up to

9.15%.
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6 Conclusion

Induction machine stator fault diagnosis is achieved by estimating the selected set

of the machine model parameters using voltage and current signals recorded at

machine power supply terminal. The PSA and GA are applied in the parameter

estimation method. The experimental results reveal that the accuracy of direct

local search method (PSA) highly depends on the algorithm initial point in the

parameter space. The risk of being trapped into local minima has been signifi-

cantly reduced by introducing the LHS method. The PSA is suitable for continuous

monitoring system where the new search starts from the previous result. The fault

diagnostic based on the GA is not sensitive to initial search point and achieves ac-

curate estimation results and guaranteed detection of global minima with increased

computation time. The proposed model-based parameter estimation technique is

robust to the motor parameters offset and unbalanced voltage supply. As a generic

technique, the method can be utilized to diagnose other types of machines by using

the corresponding machine models.
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