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Abstract 

The Virtual Fields Method (VFM) is a powerful technique for the calculation of spatial 

distributions of material properties from experimentally-determined displacement fields. A 

Fourier-series-based extension to the VFM (the F-VFM) is presented here, in which the 

unknown stiffness distribution is parameterised in the spatial frequency domain rather than in 

the spatial domain as used in the classical VFM. We present in this paper the theory of the F-

VFM for the case of elastic isotropic thin structures with known boundary conditions. An 

efficient numerical algorithm based on the 2-D fast Fourier transform is presented, which 

reduces the computation time by 3-4 orders of magnitude compared to a direct 

implementation of the F-VFM for typical experimental dataset sizes. Artefacts specific to the 

F-VFM (ringing at the highest spatial frequency near to modulus discontinuities) can be 

largely removed through the use of appropriate filtering strategies. Reconstruction of stiffness 

distributions with the F-VFM has been validated on three stiffness distribution scenarios 

under varying levels of noise in the input displacement fields. Robust reconstructions are 

achieved even when the displacement noise is higher than in typical experimental fields. 
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1. Introduction 

Inverse problems may arise in solid mechanics when the knowledge of either the material 

properties (i.e., the constitutive equations, or parameters in those equations) or of the 

boundary conditions is restricted. Material parameters are often determined by implementing 

several standardised tests with the assumption that the stress or strain distributions within the 

testing region are uniform and/or known a priori. However, if the materials under test exhibit 

spatial variations in these parameters, this approach is no longer viable. 

A significant volume of research has been carried out to solve inverse problems of this type. 

One approach for the linear elastic case is to solve for the modulus analytically while 

exploiting the information from elastography [1]. Exact distributions of the shear modulus 

valid for two-dimensions (2-D) and three-dimensions (3-D) are achieved up to a constant, by 

solving the momentum equation written for compressible elastic materials, given static (or 

time-dependent) full-field displacements u(x, y), the density ρ(x, y) and the Lamé parameter 

λ(x, y). If the Lamé parameter is not provided but the Poisson’s ratio ν(x, y) is available, the 

shear modulus distribution can also be determined. The method is limited by its instability 

when applied to nearly-incompressible materials and by its high sensitivity to noise as it 

requires derivatives of strains. The method is also not suitable for large deformation  

problems, for example those involving hyperelasticity material models. Incompressible 

isotropic plane stress inverse problems can be solved to within an unknown scaling constant 

using a variational method related to least squares, but with weighting by the adjoint operator 

[2]. 

Finite element model updating (FEMU) is another method to solve inverse problems by 

adjusting an approximate finite element model until the responses it produces are as close to 

those acquired from experiments as possible. In other words FEMU will update the numerical 

model iteratively while minimising the residual (also known as the cost function), the 

difference between a measured and computed measurand, in a least-squares sense. 

Experimental data can be either static (static deformed shape) [3, 4] or dynamic (natural 

frequencies or mode shapes) [5, 6]. The confidence of the results obtained from a FEMU 

scheme may depend on (i) the closeness of the numerical model to the real experiment where, 

for example, boundary conditions may not be well defined; (ii) the cost and available run 

time of the computational facilities; (iii) the convergence ability of the optimisation algorithm 

being used (which in turn is dependent on the initial parameter estimates, the lower/upper 

bounds of the design variables, etc.); and (iv) the sensitivity of the method to noisy data. A 

state-of-the-art review of the FEMU, together with several of other inverse methods, can be 

read in [7]. 

An alternative approach to tackling inverse problems of this kind is by using the virtual fields 

method (VFM). The development of the VFM was inspired by a relevant interpretation of the 

equation of the virtual work principle [8]. The advantage of the VFM compared to the FEMU 

technique is its ability to solve inverse problems of this type without any iteration. Numerous 
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applications of the VFM to date can be found in [8]. The key feature in any application of the 

VFM is the selection of the virtual fields. Several techniques based on different choices of 

virtual fields have been presented [9-12]. The common point of these techniques is the 

selection of the virtual fields as polynomials of spatial variables (either on the whole domain 

or in a piecewise form), and the material properties are considered as having single values 

(homogeneous) within the domain. The first attempt to parameterise the material properties 

as a function of spatial variables was proposed recently in [13] where the authors tried to 

reconstruct the spatial-dependent stiffness map of a plate with impact damage. 

In this paper, we retain the basic concepts underlying the VFM but approach the 

parameterisation of the material properties in the spatial frequency, rather than spatial, 

domain by performing a 2-D Fourier series expansion of the stiffness distribution over the 

region of interest. Furthermore, the virtual fields are not selected as polynomials of spatial 

variables as in the previous VFM literature, but from a set of simple cosine or sine functions 

of different spatial frequencies. The VFM with a Fourier series for the material property 

parameterisation and cosine/sine functions for the virtual fields will be denoted the F-VFM 

throughout this paper. The F-VFM has been successfully applied to challenging stiffness 

distribution scenarios when the boundary conditions are specified. 

The paper is structured as follows. The mathematical implementation of the F-VFM is 

presented in Section 2 followed by a demonstration of the method with numerical data in 

Section 3. The effect of the noise on the performance of the newly developed method is 

investigated in Section 4 by introducing different white noise levels into the kinematic data. 

Further discussions of the method and conclusions can be found in Section 5. 

 

2. Principle of the Fourier-series-based Virtual Fields Method in two dimensions 

2.1. Parameterisation of the stiffness distribution by a 2-D Fourier series expansion 

The fundamental equation of the VFM is replicated from the principle of virtual work (PVW) 

equation (integral form) written for a deformable body, which describes the balance between 

the virtual works of internal and external forces with any C
0
 (continuous and differentiable) 

virtual displacement field (and its associated virtual strain field). In the case of a 2-D thin 

structure with the assumptions that the volume force applied to the body is small enough to 

be neglected, and the structure is under plane stress conditions, the equilibrium equation of 

the structure can be written as in [11], 

 ∫       

 

 ∫     

 

    (1) 

The definitions of the various terms in equation (1) are as follows: 

S: area of interest within the structure over which the experimental data are available, 
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 : part of the boundary of (S) on which tractions exist, 

Q: reduced stiffness matrix of size 3×3 specifying the material properties of the structure, 

 : vector of measured strain fields over (S);   (           )
 
, where ϵxx and ϵyy are the 

normal strains as measured along x- and y-axes of a Cartesian coordinate system, and ϵss the 

engineering shear strain (ϵss = 2ϵxy), 

T: vector of tractions defined over ( ); T = (Tx, Ty), 

     : vectors of virtual displacement and virtual strain fields respectively;    (  
    

 )
 
 

   (   
     

     
 ). 

Equation (1) will be true if the chosen virtual displacement field is continuous and 

differentiable (C
0
 continuity) (see [8] for a detailed description of the principle of the VFM in 

2-D). 

Figure 1. A thin structure of arbitrary shape subject to a traction distribution T on a portion 

( ) of the boundary. 

In the in-plane linear elastic orthotropic case, the four components (Qxx, Qyy, Qxy, Qss) of the 

reduced stiffness matrix Q are independent [14], i.e. 

  (

       

       

     

)  

(

 
 

   

        

      

        
 

      

        

   

        
 

     )

 
 

   (2) 

where Eii is the elastic modulus along direction i; νij the Poisson’s ratio representing the 

deformation in direction j when a load is applied in direction i (where i, j = x or y); and Gxy 

the shear modulus. The reduced stiffness matrix in plane-stress isotropic case is dependent on 

only two stiffness components Qxx and νQxx [14], with ν the Poisson’s ratio, as 

  (

        
        

  
   

 
   

)  
 

    
(

   
   

  
   

 
 
)   (3) 

where Qxx is related to ν and the usual Young’s modulus E through 

    
 

    
 (4) 

Note that even in the isotropic case, the concept of ‘stiffness’ will still be used instead of 

‘modulus’ to allow for a more convenient extension to either orthotropic or anisotropic 

situations where the modulus is dependent on direction. 

Equation (1) can therefore be reformulated for a linear elastic isotropic body over its domain 

limited within the boundary (S) as 
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i.e. 

∫((   
        

     
 

 
   

    *   (   
        

     
 

 
   

    *)     

 

 ∫(    
      

 )  

 

 

(6) 

The early VFM was based on the assumption that the stiffness distribution (e.g. Qxx in Eqn. 

(6)) is uniform over the domain (S), allowing it to be taken outside the integral on the left-

hand side of Eqn (6). The integrand then only includes the measured and virtual deformation 

fields, which leads to a direct computation of the stiffness when the tractions on the right 

hand side are known [10]. However, this single-value-stiffness assumption is only acceptable 

for macro-scale observations where the structures are considered homogeneous. As the 

material is generally not homogeneous on the meso- and micro-scales, a continuous 

parameterisation technique of representing the stiffness components as polynomials of the 

spatial variables was proposed in [13]. In this way, the coefficients of the polynomials will be 

isolated from the integral, as desired. Recently, a discrete parameterisation method of the 

VFM has been proposed and successfully applied in 2-D [15], 3-D [16] and to welds [17-19]. 

In this paper, as previously stated, we approach the stiffness parameterisation from a different 

direction: instead of expressing the stiffness distributions as polynomials, we write them as 

Fourier series of spatial variables (x, y). In the simplest form, where ν is approximated as a 

known position-independent constant, Qxx may be written as follows: 

   (   )  ∑ ∑          (
  

  
 

  

  
)

 

    

 

   

 ∑ ∑          (
  

  
 

  

  
)

 

    
  | |  

 

   

 (7) 

where Lx and Ly are the dimensions of the 2-D domain (S); (x, y) the coordinates of all the 

points within boundary (S) over which experimental data is available;     ,      the Fourier 

coefficients of the series with spatial frequencies components (m, n); and N the maximum 

value of both indices m and n. The presence of negative frequency coefficients (n) in Eqn. (7) 

needs a brief explanation. In a standard 2-D discrete Fourier transform, the lower limit for 

both m and n would be 0. Negative frequencies in that case are implicitly present as aliased 

high frequencies generated by m and n values lying above the Nyquist limit. In the current 

case, however, the upper limit of m and n in practice will lie well below the Nyquist 

frequency for typical strain field resolution. For example, for a 1000×1000 pixel strain field, 

we would require N to equal 1000 before all the negative frequencies could be generated in 

this way. The number of degrees of freedom would then become impractically large and in 
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practice, as will be seen in Section 3, we typically choose values of N equal to or less than 40. 

As a result, it is necessary for the general case to explicitly include the negative frequencies 

in the summation of Eqn. (7). However, due to the even/odd symmetry of the cosine/sine 

functions, only one of the two indices m and n needs to take negative values. In this case we 

have chosen index m to take the values from 0 to N whilst index n runs from –N to N. The 

constraint   | |    ensures that m and n in the sine part of the expansion cannot be zero 

at the same time, which would otherwise lead to a zero row in the coefficient matrix. In 

certain cases it may be permissible to omit the negative frequencies, i.e. the lower limit on the 

summation over n can be 0 rather than –N. This is the case for the first two applications of 

section 3, where the stiffness distributions contain a fairly limited range of spatial 

frequencies.  However, the third application involving a stiff inclusion requires both positive 

and negative spatial frequencies. A lower limit on n of –N, as specified in Eqn. (7), was used 

in this case in order to avoid significant stiffness reconstruction artefacts. 

The assumption that ν is a known constant is reasonable in many cases, but where it is not, a 

second Fourier series expansion of the variable νQxx can be performed. This leads to a second 

set of Fourier coefficients that need to be solved for as part of the analysis. In the orthotropic 

case one would need four separate Fourier series expansions, one for each of the independent 

stiffness matrix components Qxx, Qyy, Qxy and Qss. 

Equation (7) can also be represented in matrix form, with the use of a shorthand notation for 

cosine and sine functions with spatial frequency components (m, n) as     (   )  

     (
  

  
 

  

  
* and     (   )       (

  

  
 

  

  
* so that 

   (   )  ∑ ∑         (   )

 

    

 

   

 ∑ ∑         (   )

 

    
  | |  

 

   

 

 (      (   )      (   ) )

(

 
 
 

    

 
    

 
    

 )

 
 
 

 

(8) 

Note that the first summation term on the right hand side of Eqn. (8) includes the dc 

coefficient     , whereas the second summation specifically excludes the      coefficient as in 

a standard Fourier series of a 2-D function [20]. The total number of unknown Fourier 

coefficients in Eqn. (8) is 

    (   )(    )     (9) 

for the case where the lower limit on n in Eqns. (7) and (8) is –N, and 

    (   )     (10) 

when the lower limit is 0. 
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By substituting Eqn. (8) into Eqn. (6), and denoting 

 (   )  (        )   
  (        )   

  
   

 
      

  ,  (11) 

Eqn. (6) becomes 

(∫   

 

 ∫       

 

  ∫       

 

 )

(

 
 
 

    

 
    

 
    

 )

 
 
 

 ∫(    
      

 )  

 

  (12) 

The row vector on the left-hand side of Eqn. (12) consists of the components of the 2-D 

Fourier transform of P(x, y). A particular choice of virtual field results in one equation of the 

form of Eqn. (12). This one equation by itself is sufficient to obtain only the simplest solution 

of a single Fourier coefficient, the dc term     , corresponding to the case N = 0. However, 

additional equations are obtainable by selecting different virtual fields, thus giving rise to 

different forms for the function P(x, y). In what follows, P
(j)

(x, y) will be used to denote this 

function for the j-th virtual field. Its 2-D Fourier transform, and hence the row vector in Eqn. 

(12), as well as the right-hand-side scalar are also correspondingly modified. So long as at 

least NF virtual fields are chosen to give NF independent equations of the form of Eqn. (12), 

these can be assembled to give the matrix equation 

     (13) 

where 
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∫(    
 ( )      
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∫(    
 (  )      
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 (16) 

Equation (13) can then be inverted to solve for the vector X containing the required Fourier 

coefficients      and      that describe the stiffness distribution. 
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2.2. Selection of virtual displacement and strain fields 

To find the coefficients of the Fourier series in Eqn. (8), different virtual displacement fields 

and their derivatives are necessary to build up the left-hand-side matrix in Eqn. (14). The 

choice of these virtual fields is the key issue in any VFM application as it will directly affect 

the degree of independence of the linear system of equations (Eqn. (13)). In earlier 

developments of the VFM, the potential virtual fields were selected on a trial-and-error basis 

to ensure that the equations of linear system Eqn. (13) are independent. Later, the stability of 

the linear system Eqn. (13) was improved by means of a special virtual fields selection 

strategy [10]. The selection can be implemented so that the integrals corresponding to the 

unknown stiffness components take their turn to be 0 or 1, so that matrix M in Eqn. (14) 

becomes an identity matrix. Further development of the VFM included an optimal selection 

of the virtual fields which at the same time preserves the stability of the system of equations 

(Eqn. (13)) and reduces the sensitivity of the method to the noise [9]. The virtual 

displacements and strains in those studies are defined as continuous functions either over the 

whole domain or piecewise within its subdomains [12]. 

In the F-VFM, the natural choice for the virtual fields is an arrangement of simple cosine and 

sine functions. Eqn. (6) involves area integrals of terms of the form    
        (,  = x, y, 

s); the use of different spatial frequencies in the virtual fields therefore allows a given spatial 

frequency in the measured strain field     to be linked in turn with different coefficients in 

the Fourier expansion of    .  

No special optimised fields have been developed yet for the F-VFM, but a few simple rules 

have been used to select the virtual fields as follows: 

1. The set of virtual field spatial frequencies should be the same as that for the modulus 

parameterization so that a given spatial frequency in the measured strain field     can 

be linked in turn with all the coefficients in the Fourier expansion of    ; 

2. Each spatial frequency for a given virtual strain field component should have both a 

sine and cosine wave of unit amplitude to ensure that the signal in     at that spatial 

frequency is detected regardless of its phase; 

3. The total number of virtual fields should be equal to NF in order to determine uniquely 

the unknown Fourier series coefficients of Eqn. (8).  

When selecting the virtual fields, one has a choice between defining   
  and   

 , from which 

the virtual strain components are obtained by differentiation, or defining    
 ,    

  and    
 , 

from which the virtual displacement components are obtained by integration. The former 

approach was used here to ensure compatibility between the inter-related strain components.   

In the case of a tensile test with loading along the x axis, most of the signal resides in the ϵxx 

and ϵyy fields, and therefore (according to rule (2) above) the   
  and   

  fields should be 

selected to produce the unit amplitude sine/cosine waves in     
 and    

 . One approach would 

be to define a set of fields with   
  chosen to produce the unit waves in    

 , with   
  set to 
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zero, and then a second set of fields this time with the unit waves in    
  and with   

  set to 

zero. However, this choice results in 2NF virtual fields which is twice the number required to 

satisfy rule (3) above. The approach taken here was therefore to define a set of fields with 

both   
  and   

  chosen to produce the unit waves in    
  and    

  simultaneously. Thus both 

the    
  and    

  fields consist of a set of cosine waves (with spatial frequency components (p, 

q) where p = 0,1,…,N; q = -N,…,N giving (2N+1)(N+1) independent virtual fields), and a set 

of corresponding sine waves (in which the trivial case p = q = 0 is excluded, giving an 

additional (2N+1)(N+1) – 1 fields). The total number of chosen cosine and sine virtual fields 

will therefore be equal to NF, which is the required number to determine uniquely the 

unknown Fourier series coefficients of Eqn. (8). An additional benefit resulting from this 

choice of virtual fields is that it allows a fast algorithm to be employed, based on 2-D fast 

Fourier transforms, as will be discussed in the next section.  

It is convenient to write matrix M from Eqn. (14) in terms of the sub-matrices A, B, C and D 

as follows 

  (
  
  

) (17) 

where A is of size (N+1)(2N+1) rows × (N+1) (2N+1) columns, B is (N+1)(2N+1) × 

((N+1)(2N+1) – 1), C is ((N+1)(2N+1) – 1) × (N+1)(2N+1) , and D is ((N+1)(2N+1) – 1) × 

((N+1)(2N+1) – 1). A and C contain the cosine terms      in the stiffness expansion with B 

and D containing the sine terms     . A and B contain the corresponding cosine waves in    
  

and    
  (denoted     ) with C and D containing the sine terms     . 

Before the system of equations given in Eqn. (13) can be solved, both the virtual shear strain 

field    
  and virtual displacement components   

  and   
  need to be specified. The cosine and 

sine terms for    
  and    

  can be integrated to give   
  and   

 , from which all the partial 

derivatives with respect to x and y can be obtained. The virtual strain fields are calculated 

from these derivatives as follows: 

   
  

   
 

  
  

(18)    
  

   
 

  
  

   
  

   
 

  
 

   
 

  
  

All the virtual displacement and displacement derivative terms, including the special cases p 

= 0 and q = 0, are summarized in Table IError! Reference source not found.. 

Table I. Virtual displacement field components   
  and   

  and their derivatives. 

Combining Eqns. (11) and (18) and Table IError! Reference source not found., we see that 

the contribution from the normal strains to the general term in matrix M can be written 
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∫((        )   
  (        )   
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}   

 

 (   ) ∫(       ) {
    

    
}  {

    

    
}   

 

 

(19) 

where the { 
 
  }  { 

 
  } notation indicates a product of a cosine/sine virtual strain field 

component with a cosine/sine term from the modulus expansion, the particular combination 

being dependent on the quadrant (A, B, C or D) of the M matrix. The shear strains can be 

expressed in similar form, as follows: 

   

 
∫    

    {
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}  {
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∫    (
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}  {

    

    
}     (   )

 

   

 
∫    (
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}  {

    

    
}      (   )

 

 

(20) 

 

2.3. Fast algorithm for the F-VFM 

When applying equations (19) and (20) to experimental data, the measured strain fields    , 

    and     are normally sampled on a regular grid and the integrals are replaced by 

summations. If the experimental strain fields have Nx×Ny pixels, then a single contributory 

term to one of the elements of M requires a minimum of NxNy addition plus multiplication 

operations. As M is non-sparse, the computational cost to calculate M therefore scales as 

C1NF
2
 where C1 is O(NxNy). For example, the second application given in the next section, 

with Nx = Ny = 1000 and NF = 881 (N = 20), took approximately 5.5×10
3 

s to set up the M 

matrix on an Intel® Core™ i7 CPU 2.79 GHz machine with 8GB of memory. 

A much more efficient algorithm can be implemented, however, using 2-D fast Fourier 

transforms. The { 
 
  }  { 

 
  } term from Eqns. (19) and (20) can be rewritten as follows: 

         
 

 
(                 )  

(21) 

         
 

 
(                 )  

         
 

 
(                 )  

         
 

 
(                  )  
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The right-hand side of Eqns. (19) and (20) all reduce to scaled versions of  [ (   )] and 

 [ (   )], respectively, where   and   denote real and imaginary parts of a complex 

variable, and H is given by 

 (   )  ∫ (   )(          )  

 

 (22) 

in which j and k are spatial frequency components, i is the square root of -1, and h is a 

function derived from the experimental strain fields.  

In discrete form Eqn. (22) can be written 

 (   )  
    

    
∑ ∑  ̅( ̅  ̅)(  ̅     ̅   )

    

 ̅  

    

 ̅  

 (23) 

where  ̅ and  ̅ are non-dimensional spatial coordinates ( ̅                 ̅  

            ),  ̅ is   expressed in terms of these coordinates, and 

  ̅  ( ̅  ̅)       (
  ̅

  
 

  ̅

  
)  

(24) 

 ̅   ( ̅  ̅)       (
  ̅

  
 

  ̅

  
)  

Equation (23) is just the 2-D discrete Fourier transform of the sampled signal  ̅( ̅  ̅) and can 

be calculated rapidly by a fast Fourier transform (FFT) algorithm, implemented for example 

as fft2 in the MATLAB language. Spatial frequency components (j, k) have the same 

meaning in Eqns. (23) and (24) as for the corresponding continuous form expressions      and 

    , with units of ‘cycles per field of view’. One assumption implicit in the use of the 2-D 

FFT is that the origin of the domain is at the bottom left of the field of view. The shift of the 

origin to the centre of the domain, as for the two applications considered in the next section, 

can be achieved by swapping the 4 quadrants of the experimental strain fields, for example 

with the MATLAB fftshift function.  

A total of only 4 FFTs are required to assemble all the terms in M, in which the four 

functional forms for h are given by the right hand side of Eqns. (19) and (20) as 

  (   )     (   )     (   )  

(25) 
  (   )     (   )  

  (   )      (   )  

  (   )      (   )  

The computational effort for each 2-D FFT is O(NxNy(log2(Nx) + log2(Ny))) operations, 

whereas that for assembling the elements of M from the resulting coefficients is O(NF
2
)~16N

4
 

operations. The latter dominates over the former for problems involving relatively large 

numbers of Fourier coefficients in the reconstruction. In such cases, the computational effort 
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becomes essentially independent of the resolution of the experimental strain fields, with a 

theoretical reduction in computational effort by a factor of NxNy by using the fast algorithm 

over the direct (i.e., element by element) method of assembling the matrix M. The 

computational effort for both algorithms scales identically with the number of Fourier terms 

in the stiffness expansion (i.e., as O(NF
2
)), however, since M is a non-sparse matrix in both 

cases. 

The computation time for the other steps in the algorithm is short compared to that for 

calculation of M for the values of NF used in this paper. The evaluation of the terms in the 

vector Y requires O(NF) operations. The solution of Eqn. (13) by Gaussian elimination 

requires O(NF
3
) operations. Reconstruction of the elastic stiffness distribution from the 

solution vector can be handled efficiently by performing a single 2-D inverse Fourier 

transform on a 2-D array of complex numbers, where the calculated      and      

coefficients are the real and imaginary parts, respectively, and requires O(NF
2
log2(NF)) 

operations. The O(NF
3
) operations required for the Gaussian elimination means that for larger 

values of NF, inversion of the matrix could ultimately become the rate-determining step for 

the algorithm. 

For the problem considered in Application 2, the total calculation time for the stiffness 

identification using the fast algorithm when implemented as a MATLAB script, on an Intel® 

Core™ i7 CPU 2.79 GHz machine with 8GB of memory, was ~2.5 s and 250 s for problem 

sizes N = 20 and N = 80, respectively. This may be compared with values of 6.1×10
3 

s and 

3.7×10
6 

s, respectively, for the direct method. A time saving of 3-4 orders of magnitude is 

therefore clearly achievable in practice. 

 

3. Validation with numerical data 

In this section we give proof-of-principle results from the F-VFM method presented above 

with spatially-varying stiffness distributions under uniform loading conditions. Three 

scenarios are considered, one in which the modulus varies smoothly with position, the other 

two with spatial discontinuities in the modulus. The input data to the F-VFM method were 

provided by a forward calculation from known stiffness distributions by the finite element 

method, thus providing a benchmark to compare the reconstructed stiffness maps against.  

 

3.1. Layered-pattern stiffness distribution 

A thin rectangular plate of size Lx×Ly = 16×10 mm
2
 and of thickness t = 1 mm containing a 

discontinuous stiffness distribution pattern, as shown in Fig. 2, was modelled in Mentat2010, 

the pre/post-processing module of the commercial finite element package MscMarc
™

2010. 

The origin of the coordinate system is situated at the centre of the plate. The region of interest 

was meshed using 1600×1000 linear quadrilateral elements with full integration. The material 
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was chosen to be linear elastic isotropic, with all elements having the same Poisson’s ratio of 

0.3 but different reference modulus values of E = 20 and 40 MPa. The corresponding 

reference stiffness values Qxx are therefore 21.98 and 43.96 MPa, respectively (Eqn. (4)). A 

uniform stress of magnitude σxx = 1 MPa pointing outwards was applied horizontally on both 

vertical edges of the plate. 

Figure 2. A rectangular plate with a discontinuous stiffness distribution subject to horizontal 

uniform stress σxx. 

The three strain field components, ϵxx, ϵyy and ϵss, provided by the finite element analysis 

(FEA) were used to calculate the unknown Fourier series coefficients using Eqns. (11) and 

(13), with the virtual fields from Eqn. (18) and Table IError! Reference source not found.. 

In this example, the number of cosine/sine terms in the Fourier series (7) was chosen as N = 

32, which leads to a total number of unknown Fourier coefficients of NF = 2177 by Eqn. (10). 

Total computation time for 1600×1000 pixels input strain was ~8.5×10
3 

s on an Intel® 

Core™ i7 CPU 2.79 GHz machine with 8GB of memory, using the MATLAB programming 

language with pinv operator to perform the inversion of Eqn. (13). Using the fast algorithm 

to generate the coefficients in the left-hand-side matrix in Eqn. (14) reduced this figure to ~20 

s. 

The reference and recovered stiffness distributions are shown in Fig. 3-a and 3-b. Although 

the two are seen to be in reasonable overall agreement, the latter is disturbed by a number of 

vertical ripples. The reason for this disturbance is believed to come from the presence of high 

frequency terms in the Fourier series of the identifying stiffness Qxx (the number of ripples is 

equal to N, the number of cosine/sine terms of the selected Fourier series; in this case N = 

32). To remove such ripples, the recovered stiffness distribution can be smoothed by 

convolution with an appropriate kernel. Although smoothing is generally undesirable, it is not 

possible to see finer details in the stiffness reconstruction than pitch value p, as the highest 

spatial frequency in the reconstructed stiffness maps has pitch   
  

 
 (mm) or   

   

 
 

(pixels) (where Nϵ is the number of pixels (or sample points/ elements) in the direction along 

which the ripples are spread). Thus, smoothing with a square kernel of size p, with all points 

inside the kernel given equal weight, does not significantly degrade spatial resolution beyond 

the limit already inherent in the technique. It does however result in a narrow ribbon of low 

magnitude along the edges of the stiffness map as shown in Fig. 3-c. This is due to the fact 

that any point within a distance p/2 from the edge of the map is influenced by the stiffness 

values outside the region of interest, which are unknown and here assumed to be zero. 

The recovered stiffness map after masking out the affected data can be seen in Fig. 3-d. The 

error map, defined as the difference between the filtered and the reference stiffness 

distributions, is shown in Fig. 3-e. Figure 3-f shows stiffness profiles at the middle of the 

stiffness map by plotting a horizontal cross section through the reference stiffness map, the 

recovered stiffness map and the recovered stiffness map after data smoothing and edge effect 

masking. It is interesting to observe an overshoot in the recovered stiffness at the transitions 
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between regions of different modulus, which is analogous to the Gibbs phenomenon when 

representing discontinuous functions by a Fourier series expansion. Thanks to the smoothing, 

the influence of this phenomenon is significantly reduced. 

Figure 3. Reconstruction of a discontinuous stiffness distribution, with N = 32 cosine/sine 

terms in the Fourier-series stiffness (units: MPa). 

 

3.2. ‘Egg-box’-pattern stiffness distribution 

In this section, a second example of the application of the F-VFM is given involving an ‘egg-

box’ pattern of spatially varying stiffness distribution. The FE model used to generate the 

input strain fields consisted of a thin square plate of size Lx×Ly = 10×10 mm
2
 and of thickness 

t = 1 mm. As in the previous section, the geometry was meshed in Mentat2010 using 

1000×1000 linear quadrilateral elements with full integration. Two vertical edges of the plate 

perpendicular to the x-axis were loaded with a uniformly distributed stress σxx = 1MPa 

pointing outwards. The origin of the coordinate system is at the centre of the plate (see Fig. 

4). 

The material was chosen to be linear elastic isotropic with the reference elastic modulus 

distribution given by  

          (
  

  
 

 

  
*       (

 

  
 

  

  
* MPa (26) 

and a constant Poisson’s ratio ν = 0.3. Plane stress conditions are applicable in this case since 

the thickness of the plate is relatively small compared to the other dimensions. The reference 

stiffness distribution is therefore 

    
 

                    (
  

  
 

 

  
*           (

 

  
 

  

  
* MPa (27) 

Figure 4. A square plate of ‘egg-box’ stiffness distribution subject to horizontal uniform 

stress σxx. 

As in the previous section, the strain fields from the forward finite element analysis were 

used to reconstruct the ‘egg-box’ stiffness distribution. In this example, the number of 

cosine/sine terms in the Fourier series (Eqn. (7)) is N = 20, with a lower limit on the 

summation over n of 0, and the total number of unknown Fourier coefficients therefore  NF = 

881 by Eqn. (10). 

Some of the main results are shown in Fig. 5. Again ripples in the recovered stiffness map are 

observed but can be largely removed by smoothing with a uniform square kernel of size equal 

to the pitch p of the highest frequency ripples. In this case Nϵ = 1000, N = 20 and so   
   

 
 = 

50. The edge-effect region of 25 pixels wide (half of the kernel window size) resulting from 

the convolution is masked out from the reconstructed stiffness as in Fig. 5-c. The residual in 
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the error map (Fig. 5-d) represents a difference value of about 0.5% between the reference 

and recovered stiffness distributions.  

Figure 5. Reconstruction of an ‘egg-box’ stiffness distribution, with N = 20 cosine/sine terms 

in the Fourier-series stiffness (units: MPa). 

 

3.3. Stiffness distribution with an elastic square inclusion 

The third application of the F-VFM is to a thin plate with a square inclusion at the centre. The 

plate with dimensions of 10×10 mm
2
 is uniformly pulled normal to its four edges with a 

stress value of 1 MPa in magnitude, as shown in Fig. 6. The plate has a Young’s modulus 

value of 10 MPa and Poisson’s ratio of 0.3. The square inclusion of size 2×2 mm
2
, situated at 

the centre of the plate, is 4× stiffer than the surrounding material, but has the same Poisson’s 

ratio. 

Figure 6. A thin plate of compliant material (dark grey) containing an elastic square inclusion 

with stiffness 4× that of the matrix (light grey), subject to uniform biaxial stress. 

A numerical model of the plate was built up with a total of 1000×1000 quadrilateral 

elements, including 200×200 elements for the inclusion. The strain data obtained from the 

forward analysis of this model was used in the F-VFM implementation to reconstruct the 

modulus distribution of the plate. Reconstruction results for the stiffness distribution of the 

plate are shown in the first row of Fig. 7 for the case N = 20. Unlike the two previous 

examples, negative frequencies were included in the analysis, i.e. the lower limit on n in Eqn. 

(7) was –N rather than 0. Ripples are visible at the inclusion/matrix boundary which can – as 

for the layered material in Section 3.1 – be regarded as an example of Gibb’s phenomenon, 

resulting from the sharp change in modulus between the two phases. Such ripples can be 

smoothed by convolving the reconstructed stiffness map with a filter of size 50×50 pixels. A 

horizontal cross section through the middle of the inclusion (Fig. 7-g) shows 4 full sinusoidal 

waves within the inclusion.  

Equivalent stiffness reconstructions for the case N = 40 are presented in figures 7-d, -e, -f and 

-h. Data smoothing is implemented with a filter of 25×25 pixels in this case. Increasing N 

from 20 to 40 doubles the number of sinusoidal waves within the inclusion, thereby 

improving the spatial resolution by a factor of 2× along each axis, and also reduces the width 

of the low-magnitude border on the stiffness maps.  

Figure 7. Reconstruction of a stiffness distribution having an elastic square inclusion, with N 

= 20 and N = 40 cosine/sine terms in the Fourier-series stiffness (units: MPa). 
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4. Sensitivity of the F-VFM to noise  

In order to simulate the effect of the noise on the performance of the F-VFM, the numerical 

input data for Applications 2 and 3 were modified by a number of additive white noise 

patterns of different standard deviation levels. The noise should not be added directly to the 

strain fields since the three strains are correlated to each other through the displacement-

strain relations. A better way is to introduce the noise into the displacement fields, which also 

simulates more closely the typical experimental situation, and then calculate the strains from 

the displacements. Independent random numbers from a zero-mean normal distribution with 

standard deviation   were added to the    and    fields. The algorithm’s performance was 

assessed for ten different   values ranging from 10
-3

 mm (low noise level) to 10
-2

 mm (high 

noise level). For comparison, the ranges of displacements (i.e., minimum to maximum across 

the full field) were 0.593 mm and 0.244 mm for the ux and uy fields, respectively of 

Application 2, with corresponding values of 0.738 mm and 0.738 mm for Application 3. For 

each of the ten noise levels, 100 noise patterns were generated and the identification of 

stiffness distribution was therefore carried out a total of 1000 times. 

The derivative      ⁄  (where j = x or y) at any given point (x, y) was estimated from the uj 

values over a square region of size Ns×Ns pixels centred on (x, y). A gradient estimator with 

reduced variance compared to a simple finite difference operator is obtained by least squares 

fitting a first order polynomial to the displacement data along each row of the square, and 

then averaging the Ns resulting best-fit gradients over all the rows. The derivative with 

respect to y was carried out in the same way but with the least squares fitting carried out 

along the columns of the square and the gradients averaged over the columns. Two kernels of 

size 7×7 and 13×13 pixels were investigated in Application 2, and 7×7 pixels in Application 

3. Both are small compared to the pitch of the highest frequency Fourier coefficient (which is 

p = 50 pixels in Application 2, and p = 25 pixels in Application 3) and therefore introduce 

relatively little additional blurring to the recovered stiffness distribution. 

The noisy ‘egg-box’ strains differentiated with different kernel sizes and at different noise 

levels are shown in Fig. 8; and the corresponding stiffness distributions recovered by the F-

VFM in Fig. 9. It is interesting to note that even though the strain maps are so disturbed at the 

high noise level that their textures are no longer clearly visible (Fig. 8) compared with the 

noise-free strain maps, one can still distinctly see the contrast in the identified stiffness after 

filtering (see Fig. 9). 

Figure 8. Numerical strain fields of an ‘egg-box’ pattern with and without noise addition, 

differentiated from displacement fields with a gradient kernel size of 13×13. 

 

Figure 9. Reconstruction of an ‘egg-box’ stiffness pattern with different strain data shown in 

figure 8. 
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The graph in Fig. 10 represents the mean and standard deviation in the average stiffness error 

in each reconstructed stiffness map at different gradient kernel sizes and noise levels. As 

would be expected intuitively, at lower noise levels there is less difference in the stiffness 

residual when using either small or large kernel, with the discrepancies in stiffness residual 

increasing at higher noise levels. At lower noise level, the mean values of the recovered 

stiffness seem to be less sensitive to the kernel sizes, but more sensitive to kernel sizes at 

higher noise levels, as presented by wider error bars. 

Figure 10. Sensitivity of the F-VFM to the displacement field noise level and to the strain-

evaluation kernel sizes in the identification of an ‘egg-box’ stiffness distribution. 

Figure 11 shows another example of the plate with inclusion at medium and high noise levels. 

A horizontal cross section cutting through the centre of the inclusion shows a stiffness profile 

not too different from the reference. 

Figure 11. Reconstruction of stiffness distribution having an elastic square inclusion at 

different noise levels of displacement fields. 

 

5. Conclusions and future work 

The paper presents a development of the existing virtual fields method by implementing a 

novel parameterisation of the stiffness distribution with a full 2-D Fourier series expansion. 

Different stiffness distribution scenarios have been reconstructed after a single computation 

step without any iteration. The sensitivity of the identification to noise is relatively low 

(about 5% error with a displacement noise level significantly higher than in typical 

experimental fields) and the spatial resolution of the recovered stiffness by F-VFM is directly 

controllable through the choice of maximum spatial frequency. The introduction of the fast 

algorithm helps reduce computation time by 3-4 orders of magnitude compared with the 

direct implementation of the F-VFM, allowing problems with up to 1000 degrees of freedom 

to be solved in just a few seconds on a normal desktop PC.  

In this study the reconstructed modulus fields were obtained from the F-VFM under the 

assumption that the traction distributions are known over the boundaries. In the future the F-

VFM will be extended to cope with the cases where boundary conditions are unspecified over 

at least a part of the boundary of the domain of interest. Other important remaining issues are 

application of the method to experimental strain fields (as opposed to strain fields calculated 

by a forward finite element analysis), and extension to the case of anisotropic materials such 

as carbon-fibre reinforced composites.  
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Table I. Virtual displacement field components   
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Figure 1. A thin structure of arbitrary shape subject to a traction distribution T on a portion ( ) of the 

boundary. Dimensions of the domain of interest (S) are denoted by Lx and Ly whilst those of the 

traction boundary are lx and ly. The properties are assumed constant through the nominal thickness t of 

the structure. 
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L
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Figure 2. A rectangular plate of a discontinuous stiffness distribution subject to horizontal uniform 

stress σxx. The reference elastic modulus E takes the values of 20 MPa (dark grey) and 40 MPa (light 

grey) on different portion of the plate. Corresponding reference stiffness values are 21.98 MPa and 

43.86 MPa, respectively. The origin of the coordinate system is at the centre of the plate. 
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Figure 3. Reconstruction of a discontinuous stiffness distribution, with N = 32 cosine/sine terms in the 

Fourier-series stiffness (units: MPa). (a) Reference stiffness distribution (mesh size 1600×1000); (b) 

Recovered stiffness distribution by F-VFM; (c) Recovered stiffness in (b) after smoothing by an 

average filter of size 50×50 pixels; (d) Recovered stiffness in (c) after masking out outlier data near 

the edges; (e) Stiffness error map (difference between the stiffness maps in (a) and (d)); (f) A 

horizontal stiffness profile drawn through the middle of the domain (vertical axis: Stiffness / MPa, 

horizontal axis: x / mm). 
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Figure 4. A square plate of an ‘egg-box’ stiffness distribution subject to horizontal uniform stress σxx.  
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Figure 5. Reconstruction of an ‘egg-box’ stiffness distribution, with N = 20 cosine/sine terms in the 

Fourier-series stiffness (units: MPa). (a) Reference stiffness distribution (1000×1000 pixels); (b) 

Recovered stiffness distribution by F-VFM; (c) Recovered stiffness in (b) after smoothing by an 

average filter of size 50×50 pixels; (d) Stiffness error map (difference between the reference and the 

recovered stiffness after data smoothing and masking out redundant data near the edges). 
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Figure 6. A thin plate of compliant material (dark grey) containing an elastic square inclusion with 

stiffness 4× higher (light grey), subject to uniform biaxial stress. 
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Figure 7. Reconstruction of a stiffness distribution from sample with a square inclusion, with N = 20 

(top row) and N = 40 (middle row) (units: MPa). (a),(d): Recovered stiffness distribution by F-VFM; 

(b),(e): as for (a),(d) after smoothing by a moving average filter of size 50×50 and 25x25 pixels, 

respectively, and masking out outlier data near the edges; (c),(f): stiffness error map (difference 

between (b),(e) and the reference); (g),(h) horizontal cross sections through the centre of the inclusion 

for N = 20 and N = 40, respectively, compared with the reference. 
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Figure 8. Numerical strain fields of an ‘egg-box’ pattern obtained from a forward finite element 

analysis, differentiated from displacement fields with a gradient kernel size of 13×13 pixels, with and 

without the presence of noise. The three strain fields,    ,     and     fields are shown respectively in 

the left, middle and right hand columns of the figure. Figures in the top row are noise-free, in the 
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middle row are with displacement noise level σ = 10
-3
 mm (low noise level), and in bottom row with σ 

= 10
-2

 mm (high noise level). 

ngtru
ongtho@ya

hoo.fr



30 

 

  

Figure 9. Reconstruction of an ‘egg-box’ stiffness pattern with different strain data shown in figure 8. 

Figures in the left column are the reconstructed stiffness patterns by the F-VFM with different noise 

levels, in the middle columns are distributions after data smoothing/removing, and in the right column 

are error of the recovered stiffness with respect to the reference. Different noise levels are added to 

displacement fields: σ = 10
-3

 mm (top row) and σ = 10
-2
 mm (bottom row). Displacement gradient 

kernel size = 13×13 pixels throughout. 
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Figure 10. Sensitivity of the F-VFM to the noise levels of displacement fields and to the strain-

evaluation kernel sizes in the identification of an ‘egg-box’ stiffness distribution. 
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Figure 11. Reconstruction of stiffness distribution for the elastic square inclusion at different noise 

levels in the displacement fields: σ = 5×10
-3
 mm (left column) and σ = 10

-2
 mm (right column). The F-

VFM was implemented with N = 40, and with a displacement-gradient kernel size of 7×7 pixels 

throughout. (a),(d): Recovered stiffness distribution by F-VFM after data smoothing and filtering; 

(b),(e): Stiffness error map (difference between the stiffness maps in (a),(d) and the reference); (c),(f) 
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horizontal cross sections through the centre of the inclusion for σ = 5×10
-3
 mm and σ = 10

-2
 mm, 

respectively, compared with the reference. 
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