There is a growing recognition of role of music in games by the gaming industry, game fans and journalists. Several conferences have been established on the roles of music and sound in video games, such as the industry-focused GameSoundCon, first initiated in Los Angeles in 2009, and Game Music Connect that has taken place annually between 2013-15 in London. Simultaneously, the study of music and audio in games is gaining interest in game studies. For example, Rob Hubbard, most famous for his work on the Commodore 64 system, has been recognized with a honorary degree by Abertay University in Dundee, Scotland (Wawro, 2016). The tendency, however, is not only in response to the industry. It is also in line with an “Auditory Turn” in the humanities and social sciences, providing an alternative sensory approach to a notable visual dominance in the humanities and social sciences (Herzogenrath, 2017).

In line with the auditory turn, the past few years have seen an explosion of studies of sound and music in games. Karen Collins’ work has set the wheels in motion in 2008 with an edited collection, in the same year as her the landmark publication, Game
Sound, which offered systematic understanding of game music. Organizations and study groups also emerged as part of an interest in game sound that covers a broad, multidisciplinary field. The annual North American Conference on Video Game Music also held its first event in 2017. Another specific focus on game music has been offered by the annual Ludomusicology conference, which began its work as an RMA (Royal Musical Association) study day in the UK. A Ludomusicology special journal issue for The Soundtrack 8/1-2 was published in 2015, and in September 2017 the Journal of Sound & Music in Games (JSMG) was announced with Mark Sweeney (interviewed in this issue of GAME) as its Director and Michael Austin as Secretary. The study area of Ludomusicology addresses the video game music from the perspective of musicology, as can be found further in a recent collection edited by Kamp, Summers and Sweeney (2016). In addition to musicology, media and cultural studies provided a wider social perspective on games and music. These include works edited by Austin (2016) and by Donnelly, Gibbons and Lerner (2014), both reviewed in this issue of GAME. Further publications are now appearing in the field, including a comprehensive textbook by Tim Summers (2016), also reviewed in this issue.

The above overview of recent approaches to game sound is far from exhaustive, but it provides an insight on the importance of reappraising the sonic element in games. Sound has, of course, always been a crucial aspect of gaming audio-visuals. Far from merely accompanying a game, the auditory elements bring life into the game interface, because sound is a sonic vibration it produces embodied affect, eliciting interpretations. Sound also provides the player an immersed sonic sense of architectural space, orientating game play perspectives, positions, and rhythms of interaction, from the ominous march of Space Invaders (Taito, 1978) to the more
recent experiences of games based on virtual and augmented reality technologies.

Music, moreover, provides sound with temporal and harmonic form. Game music is a necessary element of the immersive dramatic pace and rhythm of many games. It would be very hard to think of an experimental music shooter like *Rez* (UGA 2001) without its central sonic element, and it would also be hard to remember a game like *Streets of Rage 2* (Sega 1992) without its Yuko Koshiro soundtrack, or *Super Mario Bros* without its Koji Kondo score (Nintendo 1983). Game studies has only scratched the surface of the importance of music. Interestingly, elements of change come from scholars from the borders of the gaming field. In a study on *Super Mario Bros*’ soundtrack Schartmann (2015) provides a holistic, contextual analysis of the success of the game that does justice to its audio-visual-interactive complexity. More simplistic analyses from game studies, on the contrary, seem to forget the sonic dimension of the game, describing it often from the mythical perspective of the genius game designer, overlooking some of the many elements and agents that made it possible (deWinter, 2015). The reappraisal of the importance of the auditory elements in games has two important consequences: first, it challenges dominant definitions of video games, suggesting a more nuanced view of the medium characterized by a recognition of its hybrid and polymedia forms; second, it paves the way for alternate histories of games, in which music and sound regain their apparent, but often overlooked, centrality in players’ experience.

Sound and music are important elements of narration. They can contribute to the story *diegetically*, with music created within the dramatic space—think of the use of radio in the *Grand Theft Auto* series. They can also play their role *non-diegetically* as an accompaniment that is not always hidden as underscore, but that can become
distinctive and memorable—think of the gloomy synths of Shadow of the Beast (Reflection/Psygnosis 1989). Broadly speaking, the sonic elements add to the emotional and cultural dimensions of the game through a wide range of paramusical fields of connotation (Tagg, 2015): elements that take part in defining any gaming text. In effect, the interactive soundscape of the new Doom (id Software, 2016) effectively co-constructs the gaming experience: far from sitting behind the game play, it is a dynamic and integral part of the pace of the shooter that works alongside the environment and interaction, and an essential element for its brutal elements of pathos. *Doom’s* music effectively shapes the game with non-linear solutions, taking into full effect previous experimentation with dynamic soundtrack in games. Experimental games like *Extase* (1991), featured on the cover of our issue, are among the earliest and more radical examples of how music can be the experience. Designed by R. Herbult with P. Dublanchet, M. Rho and P. Ulrich, it features interactive music by Stephane Picq as a key of its success as a music puzzle that works on the basis of an interactive soundscape.

Yet, game music also lives on outside the game itself, in various guises. As Kamp (2016) shows, music is heard in menus, start screens and other circumstantial components outside the diegesis of the game. Moreover, orchestral and pop performances are popular within specific game subcultures (Carbone & Ruffino, 2013), which throws up debates regarding which version may be more authentic, the original game version or the performed full vision of the composer (Gibbons, 2015). As Mike Gordon, composer and producer of *Doom’s* 2016 OST (original sound track) puts it: “I think video game music should always be able to find some sort of place outside the game … that should always be the ultimate goal” (O'Dwyer, 2016, 20:30).
In effect, *Doom’s* music is so intertwined with the game play, though, as to raise the question of whether or not it can be fully appreciated outside of the game (and vice versa).

Game music not only functions as a reminder of games played, but is also used to promote the games. By becoming a defining part of gaming franchises, game music can become a successful product in itself. In this sense one literally hears the music, and next plays the game. Original sound tracks can be found in digital formats and, perhaps unexpectedly, on vinyl aimed at distinct collectors’ markets (see, for example: Napolitano, 2012), as well as on dedicated online sites that offer game music sound tracks (for example, Spotify’s dedicated VGM channel—Vincent, 2016). The pleasure of game engagement is further extended through OST remixes by game fans, subcultural activities that may well become independent of game play as techno, grime, dub step, trap and hip-hop remixes of games such as the *Zelda* and *Super Mario;* such experimentations abound on social media sites.

There is a continuous dialogue, moreover, between games and a wide range of musical styles, from classical to popular, and from fan-based to avant-garde experimentation. As video game music lives on in the sound of contemporary popular music, the chiptune scene particularly celebrates the early low-res game sound, applying this to new contexts. Similarly, perhaps, a reordering of cultural memory takes place in the reuse of game technologies. For example, the obsolete Gameboy handheld game was hacked in the late 90s by Oliver Wittchow as performative musical instrument (Wittchow, 2014), emphasizing the ambiguity between game play.
and obscured music performance (McAlpine, 2016), which is further worked out as a training ground for digital music performance (BeatLab Academy, 2016).

Not surprisingly, game music inspires a particular sonic aesthetic in electronic music production by a generation that has grown up within game culture. Computer game music is now embedded into the very fabric of electronic music genres and concomitant music cultures. With reference to the grime music scene in the UK (a music style based on a genealogical mix of electronic dance music and hip-hop), Rob Gallagher demonstrates in this issue, how a generation of music makers that has have grown up with game culture and digital music software now weave this experience into their music. Other examples of game music inspired music genres include hip-hop (Dirs. Dwyer & Neill, 2014; Vice Staff, 2014), gabba/gabber house (Schouwenburg, 2013), and a range of other electronica (Hinton, 2017). Making use of MIDI (Music Instrument Digital Interface) that became available during the mid-80s on sound cards, music composition software was developed for the same computers as video games (Manning, 1994). For example, C-Lab’s relatively short-lived 1986 Supertrack for the Commodore 64 micro (Jenkins, 1986), followed by C-Lab’s Creator (Trask, 1987), pre-runner of Notator Logic and Logic Pro, and Steinberg’s Cubase (Lord, 1989) for the Atari ST home computer, which attractively included a MIDI-to-PC port. Such music production software treats musemes (distinct musical components—see Tagg, 2013) as building blocks that are sequenced and triggered. Also the sequential visual display of music software offers a graphic interface that reminds of music and dance games in terms of moving along musemes on a linear timeline. Mobile game play and music apps add a different dimension to this, as musical elements merge with finger movements.
The specific characteristics of interactive and immersive player engagement with non-linear music composition and adaptive audio set it apart from linear music composition, however. This is illustrated in detail in the BEEP research project, in which Karen Collins and her team video-document interviews with game composers around the world. Engagement with games, game music and game culture is also addressed from players’ perspectives in her work on player interaction (Collins, 2013). In this issue, interview clips from the BEEP project are linked to a playlist of her favourite game music, showing a dynamic connection between the personal experience of game music and research in the area. In this issue, the topic of interactive game sound is further addressed by Tom Langhorst, with a focus on sound effects that provide believable action cues, and by Zander Hulme’s investigation of the issue of crossfading between audio components during game play. In his recently published monograph, Rob Gallagher (2017) suggests that a socially produced embodied alignment occurs between gamer and the rhythm of game, a type of “entrainment”. Musical pulse and rhythm can significantly enhance the experience of entrainment produced within the rhythms of game play interaction through both seductive flow and the challenge of rupture. A type of interactive dialogue is set up in this way between the game environment and player, similarly to the way in which between DJs and dancers become part of a responsive network (Ferreira, 2008; Rietveld, 2016).

Another important aspect of game music is its enmeshment in narratives of gaming history that focus on technology and sound to celebrate innovation and appease a
nostalgic sense of affection for video games. In this special issue of *GAME*, technostalgia is present in the discussions by James Newman, Kenny McAlpine and Tom Langhorst, each of who address, in various ways, issues that relate to the aesthetics of low-resolution digital sound, which hail back to the early days of gaming. James Newman has worked extensively on the ephemeral ontology of video games as hardware becomes obsolete and software is superseded, and the challenges as well as questions this brings to game preservation (Newman, 2012; see also Newman 2004 and 2008). In his study for this issue, Newman focused on the relations between technology and the musical, and on how composers like Rob Hubbard and Martin Galway went on to shape the sound of videogame music for generations of players. From the perspective of sound design, Langhorst contributes to the related issue of the connection between visual and audio realism, discussing game experience through sound in early games such as *Pong* (Atari 1972). Like Newman, Kenneth McAlpine also explores constraints faced by early programmers. McAlpine focuses on designers working with 48k Sinclair ZX Spectrum and argues that their ingenuity turned limitations into creativity and innovation, effectively shaping an early sound of video games that would go down in history as well as influence modern developments like chiptune music.

Further contributions to our issue discuss show examples of some of, the many directions of research that the auditory element of design brings to the attention of game studies. Rob Gallagher’s paper, as already discussed, demonstrates how a generation of music makers who grew up up with game culture weaved this experience into both their music and lyrics. Frederico Peñate Domínguez shows how an adaptation of American popular music in *Wolfenstein: The New Order*
(MachineGames, 2014) works as an essential aspect through which the programmers create an alternate, immersive, heterotopic post-WW2 history, and to promote the game. Zander Hulme focuses on more technical aspects, discussing how the implementation of adaptive musical through dynamic, *imbricate* audio could further increase the ability of composers to immerse players in gameplay. Other contributions in this issue include reviews of recent books on the subject of games and music, an interview with the Ludomusicology research group, and an original playlist on memorable moments in game sound history by Karen Collins.

Providing a varied series of perspectives on the many directions in which the study of the auditory dimension could bring to game studies, as well as to games, our special issue does not aim to provide an exhaustive or linear history of game music. Rather, it offers a glimpse into its “polyphonic” and still vastly underexplored dimensions, suggesting a long term cooperation and interplay between music and game studies.

Hillegonda C Rietveld is Professor of Sonic Culture at London South Bank University and, between 2011-17, Chief Editor of *IASPM Journal*, the journal of the International Association for the Study of Popular Music.

Marco Benoît Carbone is an associate Lecturer in Media Communications at the University of the Arts, London. He is a founding member of the Editorial Board of *GAME*, and a member of the UK and Italian branches of DiGRA – Digital Games Research Association.
References

Bibliography


Collins, K. –


- (Ed) 2008. *From Pac-Man to Pop Music: Interactive Audio in Games and New Media*. Ashgate.


Hytönen-Ng, E. 2013. *Experiencing ‘Flow’ in Jazz Performance*. Farnham, Surrey and Burlington, Vt: Ashgate,


A/V material

BeatLab Academy (10 November 2016) Turn your old Game Boy into an Analogue Synth, BeatLab Academy. https://www.youtube.com/watch?v=MdlJuojjuUg


McAlpine, K. —


Oliver “Doc” Wittchow. “Nanoloop Tutorial” (DocPop, Youtube, 2014 May 7)
Ludography

Space Invaders (Taito, 1978)

Rez (UGA, 2001)

Streets of Rage 2 (Sega, 1992)

Super Mario Bros (Nintendo, 1983)

Grand Theft Auto (DMA Design/Rockstar Games 1997-2017)

Shadow of the Beast (Psygnosis, 1989)

Doom (id Software, 2016)

Extase (Virgin Software, 1991)