Characterisation of hepcidin response to holotransferrin treatment in CHO TRVb-1 cells

Journal article


Mehta, K, Greenwell, P, Renshaw, D, Busbridge, M, Garcia, M, Farnaud, S and Patel, VB (2015). Characterisation of hepcidin response to holotransferrin treatment in CHO TRVb-1 cells. Blood Cells, Molecules, and Diseases. 55 (2), pp. 110-118. https://doi.org/10.1016/j.bcmd.2015.05.002
AuthorsMehta, K, Greenwell, P, Renshaw, D, Busbridge, M, Garcia, M, Farnaud, S and Patel, VB
Abstract

Iron overload coupled with low hepcidin levels are characteristics of hereditary haemochromatosis. To understand the role of transferrin receptor (TFR) and intracellular iron in hepcidin secretion, Chinese hamster ovary transferrin receptor variant (CHO TRVb-1) cells were used that express iron-response-element-depleted human TFRC mRNA (TFRC∆IRE). Results showed that CHO TRVb-1 cells expressed higher basal levels of cell-surface TFR1 than HepG2 cells (2.2-fold; p < 0.01) and following 5 g/L holotransferrin treatment maintained constitutive over-expression at 24h and 48 h, contrasting the HepG2 cells where the receptor levels significantly declined. Despite this, the intracellular iron content was neither higher than HepG2 cells nor increased over time under basal or holotransferrin-treated conditions. Interestingly, hepcidin secretion in CHO TRVb-1 cells exceeded basal levels at all time-points (p < 0.02) and matched levels in HepG2 cells following treatment. While TFRC mRNA expression showed expected elevation (2h, p < 0.03; 4h; p < 0.05), slc40a1 mRNA expression was also elevated (2 h, p < 0.05; 4 h, p < 0.03), unlike the HepG2 cells. In conclusion, the CHO TRVb-1 cells prevented cellular iron-overload by elevating slc40a1 expression, thereby highlighting its significance in the absence of iron-regulated TFRC mRNA. Furthermore, hepcidin response to holotransferrin treatment was similar to HepG2 cells and resembled the human physiological response.

Keywords1103 Clinical Sciences; Immunology
Year2015
JournalBlood Cells, Molecules, and Diseases
Journal citation55 (2), pp. 110-118
PublisherElsevier
ISSN1079-9796
Digital Object Identifier (DOI)https://doi.org/10.1016/j.bcmd.2015.05.002
Publication dates
Print08 May 2015
Publication process dates
Deposited02 Oct 2018
Accepted06 May 2015
Accepted author manuscript
License
Permalink -

https://openresearch.lsbu.ac.uk/item/876w6

Download files


Accepted author manuscript
  • 70
    total views
  • 53
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Iron and liver fibrosis: mechanistic and clinical aspects
Mehta, K, Farnaud, S and Sharp, P A (2019). Iron and liver fibrosis: mechanistic and clinical aspects. World Journal of Gastroenterology. 25 (5), pp. 521-538. https://doi.org/10.3748/wjg.v25.i5.521
A Novel Human Neuronal Cell Model to Study Iron Accumulation in Parkinson’s Disease
Mehta, K, Ahmed, B and Farnaud, S (2019). A Novel Human Neuronal Cell Model to Study Iron Accumulation in Parkinson’s Disease. Journal of Alzheimers Disease & Parkinsonism. 9 (1), p. 461. https://doi.org/10.4172/2161-0460.1000461
Measurement of 4-hydroxynonenal (4-HNE) protein adducts by ELISA
Mehta, K and Patel, V (2019). Measurement of 4-hydroxynonenal (4-HNE) protein adducts by ELISA. in: Hancock, John and Conway, Myra (ed.) Redox-Mediated Signal Transduction: Methods and Protocols, Methods in Molecular Biology, vol. 1990 Springer.
Betaine, in context.
Mehta, K and Patel, V (2015). Betaine, in context. in: Preedy, V (ed.) Betaine: Chemistry, Analysis, Function and Effects The Royal Society of Chemistry.
Molecular and cellular insights into iron regulation
Mehta, K (2012). Molecular and cellular insights into iron regulation. PhD Thesis University of Westminster School of Life Sciences
Molecular Effects of Alcohol on Iron Metabolism
Mehta, K, Farnaud, S and Patel, VB (2016). Molecular Effects of Alcohol on Iron Metabolism. in: Molecular Aspects of Alcohol and Nutrition: A Volume in the Molecular Nutrition Series Academic Press. pp. 355-368
Oxidative Stress in Iron-toxicity of Liver
Mehta, K (2018). Oxidative Stress in Iron-toxicity of Liver. in: Patel, V (ed.) The Liver: Oxidative stress and dietary antioxidants Elsevier. pp. 43-54
Iron Enhances Hepatic Fibrogenesis and Activates Transforming Growth Factor-β Signaling in Murine Hepatic Stellate Cells.
Mehta, K, Coombes, JD, Briones-Orta, M, Manka, PP, Williams, R., Patel, VB and Syn, W-K (2018). Iron Enhances Hepatic Fibrogenesis and Activates Transforming Growth Factor-β Signaling in Murine Hepatic Stellate Cells. American Journal of the Medical Sciences. 355 (2), pp. 183-190. https://doi.org/10.1016/j.amjms.2017.08.012
Case Studies: Effects of Beef, Whey and Carbohydrate Supplementation in Female Master Triathletes
Mehta, K, Seijo, M, Larumbe-Zabala, E, Ashrafi, N, Christides, T, Karsten, B, Nielsen, BV and Naclerio, F (2018). Case Studies: Effects of Beef, Whey and Carbohydrate Supplementation in Female Master Triathletes. Journal of Human Sport and Exercise. 14 (1), pp. 170-184. https://doi.org/10.14198/jhse.2019.141.14
HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication
Mehta, K, Farnaud, S and Patel, VB (2017). HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication. Molecular Biology Reports. 44 (5), pp. 399-403. https://doi.org/10.1007/s11033-017-4123-2
Erratum to: HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication
Mehta, K, Farnaud, S and Patel, VB (2017). Erratum to: HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication. Molecular Biology Reports. 44 (5), pp. 405-405. https://doi.org/10.1007/s11033-017-4127-y
Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease
Riva, A, Patel, V, Kurioka, A, Jeffery, HC, Wright, G, Tarff, S, Shawcross, D, Ryan, JM, Evans, A, Azarian, S, Bajaj, JS, Fagan, A, Patel, V, Mehta, K, Lopez, C, Simonova, M, Katzarov, K, Hadzhiolova, T, Pavlova, S, Wendon, JA, Oo, YH, Klenerman, P, Williams, R. and Chokshi, S (2017). Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut. Williams, R. (5), pp. 918-930. https://doi.org/10.1136/gutjnl-2017-314458
Characterization of hepcidin response to holotransferrin in novel recombinant TfR1 HepG2 cells
Mehta, K, Busbridge, M, Renshaw, D, Evans, RW, Farnaud, S and Patel, VB (2016). Characterization of hepcidin response to holotransferrin in novel recombinant TfR1 HepG2 cells. Blood Cells, Molecules, and Diseases. 61, pp. 37-45. https://doi.org/10.1016/j.bcmd.2016.06.008
Thyroid Hormone Receptor (TR): a regulator in Liver Fibrogenesis
Manka, P, Coombes, JD, Bechmann, L, Swiderska-Syn, M, Reid, D, Claridge, LC, Younis, R, Mehta, K, Briones, MA, Kitamura, N, Mi, Z, Kuo, PC, Williams, R., Eksteen, B, Diehl, AM, Gerken, G, Canbay, A, Flamant, F, Gauthier, K and Syn, WK (2016). Thyroid Hormone Receptor (TR): a regulator in Liver Fibrogenesis. Fibrogenesis. New York 01 - 02 Jan 2016 https://doi.org/10.1055/s-0036-1597375