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ABSTRACT

Rotating machines, such as gas turbines and compressors, are widely used due to their high performance and robustness. These machines typically operate under adverse conditions, such as high loads and high temperatures and are thus subject to performance degradation and mechanical failure. In an effort to solve this problem, condition-based maintenance (CBM) was introduced to minimize safety risks and operational downtime hazards as well as to reduce maintenance and operation costs. One of the most critical aspects of CBM is the provision of incipient fault diagnosis and prognosis regarding the system’s performance under faulty conditions. 
Traditional monitoring and alarm systems are currently widely used in the oil and gas industry to evaluate whether values of individual sensors exceed a threshold. Predictive maintenance requires techniques that are far more elaborate. Over the past decades, multivariate data-driven methods have attracted interest for condition monitoring in modern industrial plants due to the rapid growth and advancement in data acquisition technology. However, applications of these methods in industry are not widely reported. In view of the lack of research using real industrial data, this investigation focuses on the development of multivariate diagnostic and prognostic models that are applicable to operational industrial gas compressors and turbines, the early detection of faults, the identification of fault-associated variables and the estimation of performance deterioration after the appearance of faults. 
Although an increasing number of case studies of multivariate statistical monitoring has being reported in the past few years, the data employed in those studies are usually simulated data that are collected from simulation programs. The condition monitoring data of real industrial rotating equipment are generally not accessible by the public due to commercial confidentiality. Using condition monitoring data collected from operational industrial gas compressors and turbines, this work aims to provide case studies to demonstrate the capabilities of novel multivariate statistical monitoring approaches to detect faults and estimate the impacts of those faults on plant operations.
Traditional statistical monitoring approaches are based on the assumption that the underlying processes are linear and static. However, this assumption might not hold true for real industrial processes because sensory signals affected by noise and disturbances often show strong nonlinearities, and the operating conditions often vary with time. As a result, static and linear methods may not be suitable for real-world applications because they provide incomplete representations of such systems. To address the limitations of standard multivariate statistical monitoring approaches for systems with both nonlinear and dynamic properties, canonical variate analysis (CVA) together with kernel density estimation (KDE) are employed in this work to detect diverse types of faults in rotating machines. The control limits associated with the proposed model were calculated based on the Hotelling’s  and  metrics. The results obtained showed that the proposed method is effective for providing incipient fault diagnoses in the early stages of performance deterioration. For the purpose of fault diagnosis, 2-D contribution charts are utilized to identify the most fault related variables. The developed contribution plots can provide greater insights into the root causes of the faults and how the faults propagate to the remaining parts of the system.
[bookmark: _Hlk512430015]Predictive condition monitoring and preventive maintenance are seen as the means both to achieve high reliability and availability of complex rotating machines and to reduce unplanned production shutdowns. To achieve these goals, it is necessary not only to implement effective fault detection and diagnosis but also to react to the detected faults by continuously assessing and predicting the health status of the system. To test the capabilities of CVA for performance estimation, this method is first used to build a time-invariant state-space model of the dynamic system using purely historical condition monitoring data. The proposed method is applied to rotating equipment operating under both healthy conditions and slowly evolving faulty conditions to demonstrate its applicability and effectiveness. The use of a time-invariant model for system identification limits its application to linear and stationary processes. The use of a time-varying model can overcome this limitation by allowing model adaptation to rapid changes in system operating conditions of time-varying processes. To address the challenge of implementing prognostics in real-world applications with both dynamic and nonlinear properties, the time-invariant CVA model is extended using recursive least squares (RLS), resulting in the improved adaptive CVA prognostic model. The extended CVA method proposed in this work is evaluated using data captured from rotating machines operating under rapidly varying healthy conditions as well as faulty conditions. Furthermore, to account for the impact of environmental factors on a system’s performance, in this work, CVA combined with long short-term memory (LSTM) is used to estimate the behaviour of a centrifugal compressor after the occurrence of a fault using data captured during the early stages of deterioration.
[bookmark: OLE_LINK155][bookmark: OLE_LINK154]The results of this study indicate that CVA can effectively capture the system dynamics for large-scale complex rotating machines, thereby enabling the early detection of faults, the diagnosis of the root cause of the detected faults and the prediction of system behaviour after the appearance of faults. A systematic fault detection, isolation and estimation scheme can be developed based on the proposed techniques, based on which the whole plant-wide process can be monitored at both the plant-wide and the unit levels, and the monitoring information can be used to improve maintenance decisions and to reduce unscheduled downtime.
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[bookmark: _Toc506214343]Introduction
Rotating machines are widely used in different engineering fields, including the oil industry, aviation industry, mining industry and transportation industry. These machines typically operate under adverse conditions, such as high loads and high temperatures, and are thus subjected to performance degradation and mechanical failure. Failure of the rotating equipment results in the catastrophic collapse of the entire system, thereby reducing productivity and reliability. This process, in turn, causes unplanned downtime and economic losses and may even lead to health and safety problems. Therefore, it is necessary to implement effective maintenance strategies that provide incipient fault diagnoses in the early stages of performance degradation and estimations of the process measurements under faulty conditions using monitored data, such that practitioners can predict and control the progression of an incipient fault to system failure.
Maintenance strategies commonly used in industry can be classified into the following three categories: corrective maintenance, preventive maintenance and condition-based maintenance (CBM) [1]. In corrective maintenance, actions occur only when a system breaks down. In contrast, preventive maintenance involves a series of checks, replacements and overhauls that are implemented in a planned manner. The frequency of these maintenance actions is determined by analysis of the system failure rate. Although preventive maintenance significantly reduces the probability of catastrophic failures, this method appears to be overly conservative and inefficient in real-world situations because it is often unnecessary to replace a component after it is checked. CBM is a predictive maintenance strategy that continuously surveys the working conditions of the machine to determine the timing and type of required maintenance [2]. CBM uses condition-monitoring information obtained from data-acquisition systems to enable diagnoses of impending faults and prognoses regarding the machines’ performance under faulty conditions and remaining useful life (RUL). If the detected failure is catastrophic, then operators can shut down the machine immediately. Otherwise, operators can choose to continue operating the system under faulty conditions until the machine is not operable. Therefore, CBM allows maintenance actions to be scheduled on an as-needed basis, an attractive alternative to traditional strategies. Although corrective maintenance and preventive maintenance strategies are still being used for plant maintenance, CBD has been shown to be more economically profitable and effective across most industries [3].
Modern industrial facilities, such as natural gas processing plants and power plants, are increasingly complex and large-scale due to the integration of a broad range of machine types. The complexity of large-scale industrial facilities makes it challenging to build first-principle dynamic models for health monitoring and prognostics [4]. Thus, existing condition monitoring approaches for industrial processes are typically derived from routinely collected system operating data. Due to the rapid growth and advancement in data acquisition technology, long-term continuous measurements can be obtained using the various sensors mounted on the machinery systems. Complex rotating machines are heavily instrumented and automated. As a result, much condition-monitoring data is available from the different sensors that can be used to detect and diagnose faults and forecast fault evolutions. Many techniques have been developed to combine multidimensional signals for analysis. By considering the possible synergy among different sensor signals, multivariate models may provide more accurate diagnoses than models using single-source information. Furthermore, instead of focussing on critical components where the fault occurs, multivariate health monitoring tools may provide more accurate performance estimations because the faulty system behaves as a whole and because a disturbance can disrupt operation elsewhere in the system. 
A large number of industrial rotating machines, such as compressors and gas turbines, use multidimensional monitoring systems to monitor operating conditions. However, the currently conventional monitoring and alarm systems in widespread use have certain limitations: (1) Alarms are triggered only when the actual changes in the process are detectable by human operators. More effective fault detection methodologies are required to detect faults early in their development. (2) The systems lack a fault identification tool that can provide information regarding the most strongly affected variables when a fault occurs. A diagnosis tool that can help in root-cause analysis is required. (3) The systems lack a prognostic algorithm that can provide estimations of how the machine will behave after the occurrence of a fault. 
[bookmark: _Toc506214344] Objectives
[bookmark: _Hlk505377807][bookmark: OLE_LINK188][bookmark: OLE_LINK4]Mechanical faults on rotating machines are known to be large contributors to the loss of availability and, consequently, to difficulty in the management of maintenance programmes. One way to improve maintenance is to make it more predictive by using automated condition monitoring, which measures critical indicators of component health and performance. While this offers some advances, the method still falls far short of providing information for industrial gas compressor/turbine prognostics. The overall goal of the work presented in this thesis is to develop a diagnostic and prognostic model that can be applied in real-time to those operational machines typically used in the oil & gas sector, thereby enabling planned maintenance schedules. To improve the safety, availability and efficiency of the plant, it is important to first ensure that the plant equipment is operating smoothly and that a satisfactory level of reliability is maintained during the useful life of the asset. The implementation of global actions on the plant operation, like optimized workflow schemes or intelligent control strategies to optimize the production and minimize the power consumption, make sense only if the health status of the equipment is known and the performance of the system is considered. The main aim of this diagnosis is to provide incipient fault diagnoses in the early stages of performance degradation and to provide engineers with early warnings whenever the system is operating under abnormal conditions. The main aim of prognostics is to provide practitioners with further warnings by predicting the deterioration of an incipient fault, thereby allowing engineers to control the progression of the fault and make appropriate production schedules. Furthermore, the specific objectives of this work are detailed below. 
· The author should familiarise himself with the project sponsor’s data infrastructure in order to find faulty data that can be used to implement fault diagnosis and prognostics. The available data include both condition monitoring data and maintenance records. 
· Review multivariate statistical monitoring techniques that can be employed for fault diagnosis of gas compressors and gas turbines. Discuss in detail the theory and basic functioning of these techniques. Develop a multivariate fault diagnostic model and assess the model using condition monitoring data captured from operational industrial gas compressors and turbines. The model should be able to provide early detection of faults with relatively low false-alarm rates. Validate and optimize the developed model using the faulty data found in the project sponsor’s database.
· Review multivariate prognostic models that have been applied to predict system performance or the remaining useful life of rotating machinery. Discuss in detail the theory and basic functioning of these techniques as well as how they have been used for the estimation of failures. Develop a novel prognostic algorithm based on CVA that can be applied in real-time to those operating gas compressors and turbines typically used in the oil and gas sector. The data employed for this development would be obtained from the database of the project sponsor. Validate and optimize the developed model using faulty data collected from operational industrial rotating machines. 
· Develop a time-varying prognostic model that can improve the predictive accuracy of traditional CVA methods. Validate the model using data obtained from machines operating under faulty conditions.
· Develop an improved CVA-based prognostic model such that both the environmental factors and the human interventions can be factored in when predicting the system’s future behaviour. Validate the model using data obtained from machines operating under faulty conditions.

To fulfil the requirements of this project, several key research areas were identified:
· Development of a diagnostic algorithm that can detect faults early in their development while ensuring high sensitivity to abnormalities in the system and low false alarm probability. The developed method must be validated using multidimensional data captured from large-scale industrial rotating machines such as gas compressors and turbines.
· Development of prognostic tools that can provide estimations of fault evolution, the impact of faults on system operation and the future behaviour after the appearance of a fault. The developed prognostic algorithm should be validated using multivariate condition monitoring data obtained from real industrial rotating machines that operates under varying operational conditions and faulty conditions. 
· [bookmark: OLE_LINK129]Development of a prognostic tool that can estimate not only the future values of performance variables accurately but also how mechanical variables are affected after the occurrence of a fault. 
· Development of a novel prognostic algorithm that takes into account the impact of environmental conditions on a system’s performance under faulty operating conditions and thereby allows both the environmental factors and the human interventions to be incorporated when predicting a system’s future behaviour.

The research work associated with these key areas of study is presented in Chapters 3 to 6 in this thesis. 
[bookmark: _Toc506214345]Thesis Outline
[bookmark: OLE_LINK133][bookmark: OLE_LINK134][bookmark: OLE_LINK145][bookmark: OLE_LINK144][bookmark: OLE_LINK15][bookmark: OLE_LINK16]The rest of this thesis is organized as follows. The state-of-the-art techniques in the field of multivariate diagnosis and prognostics for rotating machines are presented in Chapter 2. In addition to the techniques that are commonly used for prognostic analysis of rotating machines, the application of a multivariate analysis tool called canonical variate analysis (CVA) is also reviewed. This method has been used for chemical process health monitoring using experimental data and computer-simulated data, exhibiting better performance than conventional multivariate methods such as partial least squares (PLS) and principal component analysis (PCA). There have been few studies conducted on CVA for fault detection and prognostics for real industrial rotating machines. CVA for fault detection and identification using condition-monitoring data captured from an operational gas turbine and a compressor is presented in Chapter 3. A dynamic system identification method based on CVA is presented in Chapter 4. This method was used to estimate performance deterioration and fault evolution of a gas turbine operating under abnormal conditions. The application of CVA for performance estimation of a compressor working under varying operational conditions is also discussed in Chapter 4. In Chapter 5, an extension of CVA called the adaptive canonical variate analysis (ACVA) is introduced. ACVA enables improved performance estimation by including a variable forgetting factor. The same data sets used in Chapter 4 are used to evaluate the performance of ACVA in terms of performance degradation analysis. In Chapter 6, a deep learning neural network called long short-term memory (LSTM) is used in combination with CVA to forecast the impact of faults on a centrifugal compressor. Chapter 7 summarizes how the research work presented in Chapters 2 to 6 contributes to the objectives described in Section 1.1. The future research work and the major contributions of the study described in this thesis are also discussed. 


[bookmark: _Toc506214346]Literature Review
This chapter presents an overview of multivariate diagnostic and prognostic techniques along with a review of the state of the art relevant to this study. 
[bookmark: _Toc506214347][bookmark: OLE_LINK153]Discussion of Multivariate Diagnostic Methods
[bookmark: OLE_LINK138][bookmark: OLE_LINK157][bookmark: OLE_LINK156]Rotating machines, such as gas turbines and compressors, are widely used due to their high performance and robustness. These machines typically operate under certain stresses or loads in the real environment and are thus subject to deterioration and mechanical failure. Machine failures reduce reliability and lead to unplanned downtime, causing economic losses. One approach to minimize the negative influence of these failures is to make maintenance strategies more predictive using automated condition monitoring. CBM is a preventive maintenance strategy that seeks to improve the reliability of engineering systems based on condition-monitoring information [5]. CBM enables the diagnosis of impending faults and the prognosis of the future health state and RUL of a system. Diagnostic programs allow faults to be detected early in their development. Prognostic programs based on condition-monitoring data provide a powerful tool for practitioners in making appropriate maintenance decisions by estimating the future degradation trends and anticipating the failure time. Suspensions or overhauls can be conducted on an as-needed basis, thereby allowing for improved machine availability and reliability and reduced the overall operating cost. 
Numerous diagnostic methodologies have been proposed and reported in the literature. The authors of [6] categorized these methods into three main categories: model-based methods, experience-based methods and data-driven methods. Model-based methods involve a sequence of mathematical equations derived from first principles. Faults are detected by examining the residual between values of individual sensors and estimations obtained from the model. However, developing an accurate first-principle failure model for large-scale industrial facilities can be challenging due to their complexity. Experience-based methods use probabilistic algorithms of the deterioration phenomenon by taking into account the knowledge of the process operation and the intuition and experience of site operators. Instead of focussing on the system’s first principles and human experience, data-driven methods are based on the sensory data provided by the monitoring system and are particularly suitable for heavily instrumented modern industrial facilities. 
The availability of data from multiple sensors has provided the possibility of developing multivariate data-driven techniques. By considering the possible synergy among different sensor signals, multivariate diagnostic algorithms such as PLS, PCA and CVA offer advantages over those using single-source information [6]. The basic assumption of these methods is that a high-dimensional space containing the measured variables is projected into an orthogonal space called the state space. The state space is spanned by variables that are linear combinations of the measured variables. In the state space, the first few variables are able to represent the dynamics of the system and are therefore used to construct the health monitoring model. Furthermore, the variables in the state space are used to construct a health indicator that provides information about the condition of the system that is employed to detect changes in the process. 
Amongst the aforementioned multivariate diagnostic techniques, PCA is the most widely reported [7]. PCA is dimensional reduction technique that decomposes a set of process variables to a set of decorrelated variables called principal components (PCs). PCA provides advantageous modelling performance for processes under stationary operating conditions and processes with uncorrelated measurements [8]. 
[bookmark: OLE_LINK159][bookmark: OLE_LINK158]The principle of using the PCA method for statistical monitoring is illustrated via a training data matrix X with variables and  observations (). The sample covariance matrix  of the original data set and its eigenvalue decomposition are obtained as follows:
                                                                                                  Equation 2‑1
[bookmark: OLE_LINK167][bookmark: OLE_LINK166]where  is the is a diagonal matrix, its diagonal elements are called eigenvalues, and  is the eigen-vector matrix. The eigenvectors are the directions in which the original data varies the most. The principal components (PCs) are the projections of the original data along the directions of the eigenvectors. To optimally capture the variations in the data and minimize the effect of noise, only the eigenvectors in  corresponding to the largest  eigenvalues of the covariance of X are retained in the PCA state space. The remaining () eigenvectors are considered associated with noise and are therefore excluded to the residual space. The use of PCA allows a reduction of the dimensionality of the measurement matrix, and the first  PCs preserve the essential features of the original data variability. A loading matrix  () whose column vectors correspond to the retained eigenvectors are constructed based on the information in the PCA state space. With the loading matrix, a new observation  can be projected into the lower-dimensional space, as shown in Equation 2-2:
                                                                                                                Equation 2‑2
[bookmark: OLE_LINK170][bookmark: OLE_LINK171]The estimate of , , can be obtained by projecting  back to the higher dimensional vector as follows:
                                                                                                            Equation 2‑3
[bookmark: OLE_LINK172][bookmark: OLE_LINK173]After applying the PCA decomposition to a measurement data set, a Hotelling’s   statistic can be constructed from the first  PCs as follows:
                                                                                            Equation 2‑4
where  denotes the estimated variance of the th principal component (PC), . Since the  statistic measures only the variability within the state space spanned by the first  PCs, it is unable to detect the variations in the residual space. Hence, the  statistic should be complemented by a residual statistic that accounts for those variations not captured by the state space. This is achieved by computing the squared prediction error (SPE), which is defined as:
[bookmark: OLE_LINK174][bookmark: OLE_LINK175]                                                                 Equation 2‑5
[bookmark: OLE_LINK176][bookmark: OLE_LINK177]Moreover, the upper control limits for the  and  statistics can be statistically determined according to the measurements of the training data set [9]. For each new observation, the system is considered unhealthy if the calculated  and  values are greater than their corresponding upper control limits.
[bookmark: OLE_LINK147][bookmark: OLE_LINK179][bookmark: OLE_LINK178]PLS is a multivariate regression method that maximizes the correlation between a set of independent variables  and a set of dependent variables . PCA decomposes data matrix X to obtain the principal components that best explain X, while the objective of PLS is to model the independent variables  in such a manner that the dependent variables  can be accurately estimated. PLS searches for a set of components, also known as latent vectors, that simultaneously decompose X and  with the constraint that the latent vectors explain as much as possible of the covariance between X and  [10]. The PLS decomposition of the X and  matrices are shown as follows:
                                                                                                      Equation 2‑6
[bookmark: OLE_LINK182][bookmark: OLE_LINK183]                                                                                                      Equation 2‑7
[bookmark: OLE_LINK180][bookmark: OLE_LINK181]where  and  are the score and loading matrices for X, respectively.  denotes the residuals for the independent variables . Similarly,  and  are the score and loading matrices for , and  is the residual matrix for , respectively. The columns of matrix  are the eigen vectors of ’s covariance matrix . Apart from decomposing the independent and dependent matrices, PLS also includes a regression matrix  which describes the connection between  and :
                                                                                                                Equation 2‑8
In summary, the matrix  is first decomposed into a score matrix  and a loading matrix; similarly, the matrix  is decomposed into a score matrix  and a loading matrix. The estimated  can be obtained by substituting Equation 2-8 into Equation 2-7:
                                                                                                 Equation 2‑9
[bookmark: OLE_LINK184][bookmark: OLE_LINK185]It is common practice to select the independent variables  to consist of the input variables, while the dependent variables  decompose the system output variables [6], [7]. The number of latent variables to be retained in the state space is crucial for the accuracy of a PLS regression model. Cross validation is the most commonly used technique to determine the optimal number of latent variables to be retained in the state space [11]. 
PCA and PLS assume that the measurements are time independent, i.e., that the present measurements are independent of past measurements. However, this assumption might not hold true for real industrial processes because sensory signals affected by noise and disturbances often show strong correlations between the past and future observations [12]. The demand for being able to handle the time dependency of dynamic processes motivates making the statistic multivariate monitoring tools dynamic. Lagged variables were introduced to address this limitation to allow conventional multivariate algorithms to be applied to model dynamic processes [12]. A dynamic extension of the standard PCA known as dynamic PCA (DPCA) has been proposed to account for temporal correlations between the past and the future [8]. Consider the following dynamic process:

where ,  (=1, 2, …,; =1, 2, …,) and  are constants.  and  are the th sample of the system outputs and inputs respectively.  and  show the time variance. In the extended PCA approach, every sample point is augmented with the  past values:
                                                     Equation 2‑10
The DPCA approach consists of performing PCA on the modified data matrix. 
The standard PLS is mainly used for exploring correlations in time series without any time dependency. Komulainen et al. [12] developed the dynamic PLS (DPLS) approach to address the limitation of the static PLS method. In the DPLS approach, the data are expanded at each time instance by including  past measurements according to Equation 2-10 before applying the PLS. The main aim of incorporating time lags is to preserve the auto and cross-correlations caused by the time variance of the time series, making DPLS more efficient than static PLS for monitoring dynamic processes.
In addition to approaches derived from PCA and PLS, CVA is also used in multivariate analysis. CVA is a state space method that takes serial correlations between different variables into account and can achieve a better representation of the system dynamics when applied to systems working under varying operating conditions [13]. The superiority of the CVA over the DPCA and DPLS methods was demonstrated in [14]–[17]. In [18], the capabilities of CVA to detect and diagnose faults in a large-scale three-phase flow facility were compared with that of PCA, PLS, DPCA and DPLS. The authors demonstrated that CVA can effectively represent the system dynamics when applied to non-linear and dynamically varying systems and that the performance of CVA in monitoring complex dynamic processes is superior to that of the standard multivariate algorithms.
PCA, PLS and CVA have been successfully applied for fault detection using simulated data [4], [15], [25], [16], [17], [19]–[24], data obtained from laboratory test rigs [26], [27] and data captured from real industrial processes [18], [28]. Due to its superior performance in representing the system dynamics, CVA has also been used to detect and diagnose faults using data obtained from a compressor test rig [29]. However, the application of CVA in operational large-scale rotating equipment is still limited. This study will explore the capacity of CVA to detect faults and identify faulty variables for real industrial compressors and gas turbines. After the fault is detected, CVA will be employed to build a model for the system that enables the prediction of the system’s behaviour under faulty conditions. 
[bookmark: _Toc506214348]Discussion on Multivariate Prognostic Methods
Typical procedures in CBM involve a prognostic step after the detection of a fault in order to predict the future degradation trends of the faulty system. Determining prognosis for rotating machinery could potentially reduce maintenance costs and improve safety and availability. Complex rotating machines are usually equipped with multiple sensors, which enable the development of multidimensional prognostic models. By considering the possible synergy among different sensor signals, multivariate models may provide more accurate prognosis than those using single-source information. Consequently, numerous research papers focusing on the theoretical considerations and practical implementations of multivariate prognostic models have been published in the last decade. This study focuses on multidimensional prognostic models that have been applied to predict the failures of rotating machinery with multiple sensors. The theory and basic functioning of these techniques, their relative merits and drawbacks and how these models have been used to predict the deterioration and remnant life of a machine are discussed in detail. Furthermore, this study summarizes the rotating machines to which these models have been applied and discusses future research challenges.
The prognostic approaches reviewed in this study can be divided into the following eight categories: distributed Kalman filters (DKFs), particle filters, stochastic filters, hidden Markov models (HMMs) and hidden semi-Markov models (HSMMs), support vector machines (SVMs) and relevance vector machines (RVMs), proportional hazard models (PHMs) and similarity-based models (see Figure 2-1). The theory and basic functioning of these techniques, their relative merits and drawbacks and how these models have been used to perform prognostics of a machine are discussed in detail in the following sections. 
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[bookmark: _Toc506214703]Figure 2‑1 Models categories for prognostic analysis

[bookmark: _Toc506214349]Kalman Filter–based Models
Many complex mechanical systems use a large number of sensors to monitor their operations. Because multivariate measurements are involved, an important practical problem affecting such systems is the identification of a system health estimator. To address this problem, a dynamic state-space model that uses a state vector to describe the state of health of a system is often constructed. Under a state-space structure, Kalman filtering is one of the best-known filtering algorithms to estimate the unknown state of a dynamic system. The Kalman filter estimates the system states by dividing the state-space model into two parts: a state transition model and a measurement model. The former is responsible for projecting forward the current state estimations and error covariance to obtain a priori estimations for the next estimation. The latter is responsible for feedback, that is, incorporating a new measurement into the a priori estimations to obtain an improved a posteriori estimation. The process is repeated with the previous a posteriori estimation used to predict the new a priori estimation. Hence, the Kalman filter performs state estimation in a recursive manner.
The traditional Kalman filter has been widely used for state space modelling of industrial systems working under varying operational conditions [30]–[32]. Although models using Kalman filters show better performance than those with time-invariant state space models, they are not suitable for long-term multi-step ahead predictions due to the fact that the model coefficients need to be updated at every time step when new measurements are available. 
If a dynamic system is equipped with a sensor network and all local sensors can transfer their measurements to a fusion centre, then the centralized Kalman filter (CKF) can be performed to provide a global state estimation for the system. Then, the global estimation is sent back to the local sensors for the next step in the estimation. Therefore, the estimation process carried out in the CKF is identical to that of the traditional Kalman filter [33]. The problem with centralized solutions is that a large communication bandwidth, which is difficult to obtain in practice, is required for information transformation [34]. The limitations of the CKF have motivated researchers to develop novel state estimation methods that require lower communication bandwidth for sensor networks. DKFs constitute a class of filtering techniques that require fewer communications between nodes and may offer more robust performance [35], making them an attractive alternative to CKFs. Although DKFs have been extensively used to estimate the state of a system via multiple sensors, only a limited number of publications have addressed its applicability for prognostics of rotating machines. Wei et al. [36] proposed an online RUL prediction model, anticipating that multiple sensors would improve performance for dynamic systems. In developing this method, a state-space model was first constructed to describe the dynamics of the system. A Wiener process was utilized to model system state evolution, and then, a DKF and the expectation–maximization (EM) algorithm were used to recursively estimate the state and model parameters, respectively. Online measurements from a milling machine were used to validate the effectiveness of the model, and the prediction result is highly accurate. The filter used in this example is based on the feedback version of the conventional DKF developed by Zhu et al. [37].
[bookmark: _Toc506214350]SVM and RVM
[bookmark: OLE_LINK27]SVM: The SVM is a supervised learning method that was originally formulated for classification problems [38] and was later extended to regression problems [39]. In classification problems, the task is to find an optimal separation surface (often designated as a hyper-plane) that separates multidimensional data points into two categories. New observations are then predicted to belong to one class or the other based on the calculated hyper-plane. In regression problems, instead of searching for a maximum separation classifier, the SVM seeks to find a minimum margin fit for the input data points [40]. Similar to the classification SVM, when the regression SVM is applied to nonlinear regressable data points, a kernel function is often used to map nonlinear inputs into a higher dimensional feature space, after which a linear minimum margin fit can be constructed in that space to perform function estimation. SVMs have many different configurations based on the different kernel functions used to perform feature space transformation. The most commonly employed kernel function is the radial-based function (RBF) [41]. 
An advantage of the SVM is its good ability to manage its generalization capability [42]. Specifically, to avoid over-fitting, SVMs use the structural risk minimization (SRM) principle to achieve a trade-off between model complexity and the quality of fit to its training data [43]. Other machine learning techniques, such as neural networks, construct decision functions by relying principally on minimizing training errors and, therefore, are more likely to encounter over-fitting problems [42]. The computational burden is relatively low for SVM compared to neural networks [44]. Moreover, SVM-based models have been reported to be capable of handling situations that are highly nonlinear [45].
Several prognostic models based on classification or regression SVMs have been developed to predict the RULs of rotating machines. Louen et al. [42] proposed a RUL prediction framework that uses a SVM classifier to measure the distances between the separation hyperplane and sensor measurements. A Weibull function is then adopted to model the resulting distance distribution. The performance of this model was tested using a turbofan engine simulation data set. Garcia Nieto et al. [46] developed a RUL estimation model based on the particle swarm optimization (PSO)-RBF-SVM technique. A SVM-based regression method was employed to predict the RUL for observed multivariate measurements, and PSO was used to optimize the SVM parameters. The results show that the proposed prognostic model accurately predicts the engine RULs based on a simulation data set.
Traditional SVM was extended in Lu et al. [47] to predict the degradation of bearings. The authors first used the PCA algorithm to fuse both the time domain and frequency domain features obtained from vibration measurements. Subsequently, the least squares support vector machine (LSSVM) was employed to predict the bearing degradation trend. LSSVMs are least squares versions of SVM and involve solving a set of linear formulas that are easier to solve than the quadratic programming used in standard SVMs [45]. Compared with traditional SVM, LSSVM can lead to better performance, particularly in addressing nonlinear, small sample problems [48]. Recently, Niu and Yang [45] combined two nonlinear regression models (SVM and Dempster–Shafer regression (DSR)) to predict the degradation process of a methane compressor. The authors first extracted features from vibration signals and then inserted the features into a neural network to create a fused degradation indicator. Next, degradation predictions based on DSR and SVM were fused to form a hybrid degradation index.
[bookmark: OLE_LINK26]RVM: Although SVM has achieved remarkable performance with regard to both classification and regression, it has some shortcomings, such as its lack of probabilistic outputs. The RVM solves this problem by providing probabilistic interpretation of its outputs in a Bayesian framework. In addition, RVM offers a number of additional benefits, such as the ease of using arbitrary kernel tricks and the automatic approximation of model parameters [49]. Meanwhile, update rules for the hyperparameters can extend the training time required for RVM, leading to increased computational costs [49]. Caesarendra et al. [50] first employed a logistic regression method to assess the failure degradation process of a bearing using simulated data. The determined degradation was subsequently used as the training data for a RVM, and then, the trained RVM was employed to predict the failure probability of the bearings.
[bookmark: _Toc506214351]Particle Filter
As discussed above, when multivariate measurements are available, a state space model can be constructed to make inferences regarding system dynamics. Such a model consists of two parts: a state model describing the evolution of the system state over time and a measurement model linking multidimensional observations with the state. The particle filter is a recursive Bayesian filtering technique based on Monte Carlo simulations [51]. According to the Monte Carlo principle, the approximations made using particle filters represent the required posterior distribution of the health state determined by a set of particles with associated weightings. The main idea is to use a set of particles sampled from the state space to approximate the required posterior distributions, thereby avoiding integrations. These particles evolve and adapt recursively when new information becomes available [52].
It is worth noting that the particle filter is not good at long-term RUL prediction. This is because filtering techniques cannot function properly without new observations, and thus, developing tools that project particles into the future in the absence of measurement updates is necessary. According to Jouin et al. [53], two types of solutions have been presented in the literature: projecting particles and artificially generating measurements. The first aims to project the last particle distribution at the end of learning through all possible future paths with associated weights that can be determined using the state model. Examples of methods that employ particle projection can be found in [54] and [55]. The main idea underlying the second method is to use complementary algorithms to predict future measurements after the last update. Algorithms that have been used for measurement generation include LSSVM [56] and neural networks [57]. These models are trained to recursively estimate the future value of each variable.
The benefits of applying particle filters to prognostics are summarized as follows: (1) particle filters allow information fusion such that data collected from multiple sensors can be employed collectively; (2) particle filters are suitable for dynamic processes with nonlinear and non-Gaussian characteristics [58]; (3) particle filters provide probabilistic outputs that facilitate managing prognostic uncertainties [56]; (4) particle filters enable the joint estimation of state and model parameters, thereby enabling more precise state estimations [59]; and (5) particle filters can handle the high level of uncertainties in long-term predictions [60]. However, one limitation of particle filtering is that a large number of samples may be required to accurately approximate state distributions, which may cause the filtering system to collapse. A good approach to solving the collapse problem is to adopt the efficiency monitoring method of filtering proposed in [61]. 
Numerous studies have applied particle filters to rotating machine prognostics. Wang [62] presented an engine wear estimation model based on particle filtering. In his work, the relationship between condition monitoring measurements and system degradation was modelled using the concept of a floating scale parameter. PCA was employed to produce a one-dimensional representation of the monitoring data, which was then processed using a particle filter to obtain the density function of the systems wear. Butler et al. [63] developed a prognostic framework for the main bearing of a wind turbine. A residual, which was generated using a bearing temperature model, was extrapolated using a particle filter to produce the probabilistic RUL distribution. Recently, Sun et al.81 applied a state-space model embedded with a particle filter to a gas turbine monitoring data set obtained via simulation. A HI, inferred using a linear regression method, was used to represent the latent degradation of the engine [64]. Wang and Gao [65] proposed a degradation prognostic model for jet engines based on regularized particle filtering (RPF). This model enables continuous tracking of both gradual and transient degradation. Recently, Baraldi et al. [55] combined a particle filter and a physical model to provide RUL predictions of a turbine blade seeded with creep damage. Their results demonstrate particle filters accuracy and superior uncertainty control capabilities with regard to predicting machine failures. More recently, Li et al. [66] developed an improved exponential model for rolling element bearings. The authors proposed a novel FPT selection approach for the detection of incipient faults. Lei et al. [67] proposed a particle filter-based method for RUL prediction of bearings. In this work, a fusion HI, inferred using a self-organizing map (SOM), was used to reflect the degradation process. The indicator was then input into a state-space model for RUL prediction. 
[bookmark: _Toc506214352]HMM and HSMM
[bookmark: OLE_LINK7]HMM: In state-space modelling, a dynamic system can be described at any time as being in one of a set of discrete states. The system evolves through a finite number of states until reaching the final state (failure) in accordance with a set of transition probabilities associated with the states. If the states in the above stochastic process are unobservable and responsible for producing a sequence of observations, we can call the state-space model a HMM [68]. The objective of implementing HMMs in prognostics is to forecast the evolution of the state of health of a system from its current state to its ultimate failure based on both observations and the model. A HMM is characterized using the following elements: the state transition probability distribution , which denotes the probability of being in state  at time instant t while being in state  at time instant ; the observation probability , which denotes the probability of emitting an observation  at time  if the system is at state  at time ; the initial state distribution ; the number of states ; and the number of observations  resulting from a distinct state. Therefore, a complete HMM requires the specification of the parameter set . 
HMM has been used extensively in the literature [69]–[71] to estimate health states and diagnostics. However, taken collectively, the results indicate that standard HMM invokes a heavy computational burden because of the competitive learning process. This situation may worsen when HMM is applied to multidimensional observations, such as those typically collected from complex rotating machines. Although additional sensors would improve overall performance, it has been recommended that developers consider the negative effects of sensor fusion, such as the computational complexity involved when using regular HMMs [70]. 
The standard HMM has been successfully used in prognostics. Camci and Chinnam [70] implemented a regular HMM for health state identification and RUL prediction. The state transition probability-based method was used together with Monte Carlo simulations to estimate the remaining lifetime of a computer numerical control (CNC) drill machine. The results indicate that standard HMM can provide reasonable diagnostics and prognostic accuracy based on multivariate sensory data. Recently, Giantomassi et al. [72] proposed a hybrid model to estimate the health and prognoses of turbofan engines. In this instance, an artificial neural network (ANN) was first employed to extract features from multivariate observations, and then, a HMM-based prognostic model was used to determine the RUL. Fine [73] developed a modified algorithm called the hierarchical hidden Markov model (HHMM). HHMM is an extension of HMM that contains several sub-HMMs designed to facilitate RUL estimation. Each sub-HMM of a HHMM is composed of several hidden states, and a system can transition between hidden states within a given sub-HMM. HHMMs have a number of advantages over HMMs. First, top-level model states can be used to represent underlying system states, whereas sub-level model states enable modelling of the systems non-stationarity. In addition, HHMMs enable us to model all system health states using only one model. Thus, the heavy computational burden required by competitive learning can be avoided. Most importantly, HHMMs directly capture state transition probabilities, which is not possible with regular HMMs. Camci and Chinnam [70] applied a two-level HHMM to monitor the drill-bits on a CNC machine. Their results show that the proposed model is a very promising tool for effective RUL prediction. Another extension was proposed by Soualhi et al [74]. The authors incorporated the estimation of the imminence of a fault into standard HMMs. The risk of the imminent appearance of a fault was modelled as a function of the state transition probability, the emission probability and the forward variable resulting from the FB algorithm. 
HSMM: One problem with the HMM models discussed above is that they do not consider state duration modelling. Thus, another extension to HMM, HSMM, was developed to improve the accuracy of RUL estimations. HSMM applies grid-based techniques to estimate health state–related probability distributions [75]. HSMMs assume that a system usually goes through a number of distinct health states before reaching failure, and the unobservable health state is continuous but can be partitioned into N segments. The probability distributions of the durations of each health state can be estimated using statistical inference. Estimated state duration probabilities can be subsequently employed to predict the RUL. HSMM has been extensively applied to prognostics. Dong and He [76] developed a prognostic framework based on HSMM for pumps. Discriminant function analysis was employed to determine the weightings of different sensor signals. The calculated health state duration probability distributions were used to predict the RULs of the pumps. Recently, Liu et al. [77] proposed an integrated diagnostic and prognostic model for multi-sensor systems based on the adaptive hidden semi-Markov model (AHSMM). Chen et al. [78] proposed an improved HSMM (multi-sensor mixture HSMM) to provide better representations for non-stationary, non-Gaussian multidimensional time series. 
HSMMs are excellent for distinguishing the different degradation stages of a machine. However, this methodology has some drawbacks. First, it may be difficult to relate the artificially defined state transition points to the actual degradation process because of difficulties with regard to the physical observation of the evolution of the fault [79]. Moreover, as the number of health states increases, the computational cost of HSMMs becomes extremely heavy [80]. Future efforts should be made to improve the computational efficiency of this method. 
[bookmark: _Toc506214353]Stochastic Filter
Most of the existing filtering-based models use a state vector to describe the health condition of the system under investigation. One disadvantage of these models is that they need to find an appropriate failure threshold to determine the remaining lifetime. In order to overcome the limitations of traditional filtering methods, Wang and Christer [81] developed a state-space prognostic model embedded with a stochastic filtering technique. In this model, they define the condition of a mechanical system as its condition residual time (CRT), namely, the time lapse from any time point that condition monitoring data is captured to the time that a failure may occur. The term CRT can be also referred to as RUL if no maintenance action is carried out during the time lapse.
Various extensions have been developed and applied to rotating system prognostics based on the above method. A revision of this stochastic filtering was applied to the lifetime data and monitored oil analysis data collected from an aircraft engine [82]. PCA was first employed to obtain a weighted average of the original monitored data. The RUL was then predicted from the transformed monitored observations. A similar model is presented in [83] in which the authors combined lifetime data and accumulative metal concentration data to estimate the RUL of a diesel engine. Similarly, Wang and Hussin [84] developed a stochastic filtering-based prognostic model and applied it to two data sets: engine lubricant and contaminant analysis data and metal concentration data. Another extension of Wang’s stochastic filtering was reported in [85] which extended the original filtering in terms of two aspects: (1) the concept of a two-stage life model was introduced to achieve both fault detection and prediction and (2) a combination categorical and continuous hidden Markov chain was used to model the underlying health state transitions. Recently, Wei et al. [86] proposed a stochastic filter-based model to use the multisensory information for better RUL prediction. They also compared two sensor fusion approaches with the results obtained from a single sensor and found that a higher prediction accuracy can be achieved by the stochastic filtering-based model.
[bookmark: OLE_LINK8]Although the above stochastic filtering techniques could make predictions without setting a failure threshold, they have some limitations: (1) Since the initial value of system state is the distribution of system lifetime, it can be theoretically estimated from the historical system lifetime data. But in reality, this kind of information may be scarce in the case of condition monitoring, with the faulted components being replaced before system failure [81]. In view of the lack of failure data, the initial distribution may have to be estimated based on the subject assessment of domain experts. (2) Although the model input can be multidimensional, such as oil analysis data or other multivariate observations obtained from complex machines, a sensor fusion technique is commonly required to reduce the dimensions of . These techniques include PCA [82], ICA [84] and linear regression [64]. (3) In the framework of stochastic filtering, the faulty equipment is assumed to be a single-component system subject to one type of failure mode, such as wear-related failure. The correlation between different types of failures is not considered in stochastic filter-based modelling. Thus, efforts should be made to extend these models to situations in which multiple failure modes are present.
[bookmark: _Toc506214354]ANN-based Models
Recently, ANNs have been widely used to model degradation processes. An ANN is a computing system that can capture, represent and compute mapping from the input multi-variable space to the output space [87]. ANNs comprise a large number of processing elements (known as neurons) that are connected to each other by weighted interconnections [88]. These neurons are organized into distinct layers, and their interconnections are determined using a training process. This network training involves presenting data sets collected from the degradation process. Subsequently, the network parameters are adjusted to minimize the errors between the model output and the desired output [87]. Once the training is finished, ANNs process new input data to make predictions about the outputs.
Network architectures that have been used for prognostics can be classified into two types: feed-forward and recurrent networks [89]. In feed-forward networks, the signals flow in one direction; therefore, the inputs to each layer depend only on the outputs of the previous layer. However, applications in signal processing and prognostics should consider the system dynamics. Recurrent networks are such a method that can provide an explicit dynamic representation by allowing for local feedbacks [90]. Researchers have extensively applied two types of networks multi-layer perceptron (MLP) and recurrent neural networks (RNNs) (Figure 2-2 shows the architecture of a simple RNN) which are discussed below:
MLP: MLPs are one of the most popular feedforward neural networks used for prognosis. MLPs utilize the back-propagation (BP) learning technique in conjunction with an optimization method such as gradient descent and Levenberg–Marquardt for training [91]. At completion of a training process, the MLP is capable of giving output solution for any new input based on the generalized mapping that has been developed [92].
[bookmark: OLE_LINK14]RNN: Feed-forward neural networks have limitations with regard to identifying temporal dependencies in time series signals [93]. RNNs overcome this problem by including local or global feedback between neurons. Thus, they are suitable for a wide range of dynamic systems, such as time-varying and nonlinear systems [93]. However, the drawback of RNNs is that their accurate long-term predictions are limited because of the frequently used gradient descent training algorithm. The gradient descent vanishing problem has been solved by some newly developed RNNs, such as long short-term memory which will be used in chapter 6 to help in the performance estimation of a compressor. 
ANNs can represent and build mappings from historical measurements to predict RULs and adapt them to unobserved situations. The strong learning and generalization capabilities of ANNs render them suitable for modelling complex processes [88], particularly systems with nonlinear and time-varying dynamics [92], [94], [95]. In addition, ANNs are superior in capturing and presenting relationships between variables in high-dimensional data space, making them powerful tools for multidimensional interpolations, whereas RNNs are suitable for approximating dynamic dependencies [93]. These distinct characteristics make ANNs promising candidates for modelling degradation processes in rotating machinery.
Xu et al. [96] successfully employed RNNs, SVMs and DSR to estimate the degradation of an aircraft gas turbine. An echo state network (ESN), which is a variant of RNNs, was employed by Peng et al. [97] to predict the RULs of engines using National Aeronautics and Space Administration (NASA) repository data. Their results indicate that the ESN significantly reduces the computing load of traditional RNNs. ANNs have also been used in combination with Kalman filters and extended Kalman filters [98], [99] to predict failures in aircraft engines.
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[bookmark: _Toc506214704]Figure 2‑2 Architecture of a simple RNN

Although ANNs have been shown the superior power in addressing complex prognostic problems which have multivariate inputs, there are some limitations. For example, the models rely on a large amount of data for training. Furthermore, ANNs allow for few explanatory insights into how the decisions are reached (also known as the black box problem), which has become concerning to modellers because causal relationships between model variables are essential for accurate descriptions of fault evolutions [100]. Moreover, ANNs lack a systematic approach to determine the optimal structure and parameters of the network to be established [101]. And in practice, the number and size of layers (especially hidden layers) are determined by testing a number of different combinations of numbers of layers and nodes, which is obviously time consuming. Thus, future studies should focus on establishing this systematic approach.
[bookmark: _Toc506214355]PHMs
Machine failures can be predicted by analysing either condition monitoring data or historical service lifetime data [102], [103]. Developing appropriate prognostic models using a combination of condition-monitoring data and lifetime data would be useful. The PHM, proposed by Cox [104], attempts to utilize both types of information for RUL prediction. The basic assumption of this method is that the failure rate of a machine depends on two factors: the baseline hazard rate and the effects of covariates (different condition monitoring variables). Hence, the hazard rate of a system at service time t can be written as , where  denotes the baseline hazard function, which is determined by the system lifetime data, and  is the covariate function that describes how a number of monitoring variables influence health degradation.  are unknown parameters to be determined that describes the effects of individual variable on system health [102]. Applying PHMs requires that both the baseline hazard function  and covariate function  be identified. Methods that have been used to estimate the baseline function mainly include the maximum likelihood algorithm [105] and the Wald statistic [106]. The covariate parameters can be determined by the so-called partial likelihood method, which is developed by Cox [104]. Subsequently, parameters are obtained by maximizing the partial likelihood, and key variables that are closely related to the system failure are retained and employed to estimate the system failure probability density [107].
PHMs have been applied to many complex problems regarding the failure prediction of rotating machinery. Jardine et al. [108] developed a PHM and employed it to estimate the RULs of aircraft engines and marine gas turbines. The baseline hazard function was assumed to be a Weibull distribution and was estimated using lifetime data. The levels of various metal particles, such as Fe, Cu and Mg, in the oil were used as the covariates in both cases. The influence of the condition-monitoring variables on the equipment RUL can be properly interpreted by this PHM. The authors also used the PHM to estimate the RUL and optimize maintenance decisions regarding haul truck wheel motors in [106]. However, the above models are based on the assumption that the system under study is subject to a single failure mode. In practice, most complex mechanical systems consist of multiple sub-systems with various failure modes [102]. Therefore, a prognostic model that determines only one type of failure mode cannot properly estimate the overall system failure time. Recently, Zhang et al. [102] proposed a mixed Weibull proportional hazard model (MWPHM) to assess the reliabilities of complex mechanical systems. In this model, the overall system failure probability density is determined by mixing the failure densities of various failure modes. The influences of multiple monitoring signals on different failure modes are integrated using the maximum likelihood estimation algorithm. Real data from a centrifugal water pump were combined with lifetime data to test the robustness of the model.
The main problem with using PHMs for failure prediction is that they require a large amount of lifetime data to determine the parameters of the baseline hazard function and the weighting of covariates [95]. This requirement may limit the applications of PHMs because, in many cases, the amount of lifetime data may be insufficient for various reasons, including missing or non-existent records and transcription mistakes [109]. Another drawback of PHMs is that they depend on the failure thresholds chosen for RUL prediction. Thus, the threshold must be continuously updated when system maintenance is conducted [102].
[bookmark: _Toc506214356]Similarity-based Models
Similarity-based prognostic models are essentially pattern matching approaches [110]. They are suitable for situations in which abundant run-to-failure data for a mechanical system are available [111]. The basic structure and working principle of such approaches is depicted in Figure 2-3.
[bookmark: _Hlk505390280][image: ]
[bookmark: _Toc506214705]Figure 2‑3 General framework of similarity-based prognostic models

Multidimensional condition monitoring data collected from various operating conditions are first processed (e.g. noise reduction, feature extraction and multi-sensor data fusion) to produce a HI. This indicator represents the fault evolution using HI trajectories and is often a one-dimensional time series. Implementing the same processing operations to all training data sets, each multidimensional training series can be converted into a unique HI trajectory. Hence, a library of HI trajectories can be obtained during the training process. To predict the RUL using a new data set, the same processing operations are applied to the data to produce a new HI. Then, this new trajectory is compared with the library of HIs to determine which trajectory have the best matching scores [112]. Those HIs with the highest similarities are subsequently used to predict the RUL. Similarity-based methods differ from traditional prognostic models in that instead of fitting a curve for a system and extrapolating it, the sensory data are transformed into a HI trajectory and then compared to a library of HIs. The purpose of doing this is to match the new HI trajectory to a certain life period of a certain trajectory in the library. Then, the remnant life of the test component is calculated using the real life of the matching component subtracting the position of the matching life period [111]. Examples are given below to demonstrate how various similarity-based models have been used for prognostic analysis.
Similarity model based on shapelet extraction. Malinowski et al. [112] developed a failure time prediction technique that employs the shapelet extraction process to extract failure patterns from multivariate data obtained from a turbofan engine simulation program: Commercial Modular Aero-Propulsion System Simulation (C-MAPSS). The RUL is calculated as the weighted sum of the failure patterns, which are highly corrected with the residual life.
Similarity model based on normalized cross correlation. Zhang et al. [113] applied a prognostic method based on the similarity of the phase space trajectory to the monitoring data collected from a pump with six distinct degradation modes.
Similarity model based on PCA and K-NN classifiers. Mosallam et al. [114] employed PCA and empirical mode decomposition (EMD) algorithms to construct HIs from turbofan engine deterioration data. Then, K-nearest neighbour (K-NN) classifiers were used to determine the most similar HIs for RUL prediction.
Similarity model based on belief functions. A method based on belief functions was proposed by Ramasso and colleagues [115], [116]. These authors only matched the last points of the trajectories with tested ones because the last points are more likely to be closely related to the degradation state.
Similarity model based on support vector regression. Wang et al. [117] have improved upon the previous models by incorporating uncertainty information into the RUL estimation. Towards this end, they estimated HI degradation curves using RVM. 


[bookmark: _Toc506214357]Summary of Prognostic Models of Rotating Machinery
Table 2-1 summarizes the applications of different prognostic models to various rotating machines.
[bookmark: _Toc498713019]Table 2‑1 Applications of multidimensional prognostic models
	Rotating machine type 
	Prognostic models

	Gas turbine engines
	SVM with Weibull function [42]
PSO-RBF-SVM [46]
Particle filter with PCA [62]
Particle filter with linear regression [64]
Regularized particle filtering [65]
Particle filter with physical model [55]
HMM with ANN [72]
Stochastic filter with PCA [82]
Stochastic filter with ICA [84]
Stochastic filter [86]
RNN, SVM and DSR [96]
ESN [97]
ANN with Kalman filters [98]
ANN with extended Kalman filters [99]
PHM with Weibull distribution [108]
Similarity model based on shapelet extraction [112]
Similarity model based on PCA and K-NN classifiers [114]
Similarity model based on belief functions [115], [116]
Similarity model based on linear regression and Euclidean distance     measurement [111]
Similarity model based on support vector regression [117]

	Pumps
	HSMM [76]
AHSMM [77]
MWPHM [102]
Similarity model based on normalized cross correlation [113]

	Diesel engines
	Stochastic filter with PCA [83]

	Milling machines
	DKF [36]
HMM [118]
HHMM [73]

	Haul truck wheel motors
	PHM [106]

	Bearings
	LSSVM with PCA [47]
Particle filter [63]
HMM [74]
HSMM [78]
Stochastic filter with PCA [85]
Particle filter with adaptive FPT selection [66]
Particle filter with weighted minimum quantization error [67]


RUL: remaining useful life; SVM: support vector machine; PSO: particle swarm optimization; RBF: radial-based function; PCA: principal component analysis; HMM: hidden Markov model; ANN: artificial neural network; ICA: independent component analysis; RNN: recurrent neural network; DSR: Dempster–Shafer regression; ESN: echo state network; PHM: proportional hazard model; K-NN: K-nearest neighbour; HSMM: hidden semi-Markov model; AHSMM: adaptive hidden semi-Markov model; MWPHM: Weibull proportional hazard model; DKF: distributed Kalman filter; HHMM: hierarchical hidden Markov model; LSSVM: least squares support vector machine; FPT: first predicting time.


This study reviews multidimensional prognostic models for rotating machines. The methodologies reviewed herein make predictions based on condition-monitoring information obtained from multiple sensors. Relevant theories are discussed, and the merits and limitations of the main prognostic model classes are detailed. Examples are given to explain how these approaches have been applied to predict degradation and RULs of rotating machinery. From the literature reviewed herein, a number of observations and suggestions can be made as follows: In practice, the implementation of the models reviewed remains in the nascent stage, although a considerable number of studies have been performed based on simulated and experimental data. Therefore, efforts should be made to validate the effectiveness of these models using real world data. In addition, future research should develop prognostic models that better adapt to continuously changing operating conditions during the degradation process. Most existing prognostic models consist of two phases: a learning phase, during which the analytical model is trained using run-to-failure data, and a testing phase, during which the trained model is employed to assess the state of the current system and to predict the systems RUL. However, failure data is typically scarce, which limits the application of these models to real industrial facilities. Additional work is required to develop methods that use less training data for prognostic analysis. 
[bookmark: _Toc506214358]CVA for Health Estimation and Prognosis
[bookmark: OLE_LINK20]In addition to the aforementioned prognostic methods, CVA is also a state space estimation method that can be used for precise estimation of the behaviour of a faulty system. Unlike other time series approaches such as autoregressive integrated moving average (ARIMA), state space methods do not require the variables to be stationary when applied to multiple-input and multiple-output (MIMO) systems, and are therefore more suitable for real industrial systems exposed to varying operational conditions [119]. Furthermore, the rapid growth and advancement in data acquisition technology allows for the exploitation of multivariate methods that may provide increased estimation accuracy over univariate time-series approaches [119]. The superiority of the CVA over the standard multivariate methods when applied to nonstationary systems working under variable conditions was demonstrated and reported in [14]–[17]. Ruiz et al. [18], when comparing PCA, PLS, DPCA, DPLS and CVA, found that the CVA model significantly outperformed the other models due to its representation of the system dynamics. Juricek et al. [120] compared the application of CVA, PLS and subspace state space system identification (N4SID) in modelling dynamically complex industrial processes. They reported that the state space models identified using the CVA approach outperformed the conventional subspace identification techniques. There are many successful examples of the application of the CVA algorithm to model the dynamics of both linear and non-linear systems [14], [16], [121]–[123]. 
[bookmark: OLE_LINK44][bookmark: OLE_LINK21]Some of the main challenges that face data-driven condition monitoring are the non-linear system behaviour, non-Gaussian distributions, presence of time-dependency, variable operating conditions and process dynamics [13], [124], [125]. The development of multivariate analytical tools for modelling and monitoring complex industrial systems, the provision of accurate predictions of system behaviour and plant-wide integrated control are some of the most promising areas of research in the oil and gas industry. The capabilities of CVA are well matched to the needs of the oil and gas industry; therefore, this approach will be explored in detail throughout this thesis. Furthermore, in Chapter 5, an extension of CVA called the ACVA is introduced. Condition-monitoring data captured from real rotating machines will be used to evaluate the performance of ACVA in terms of performance degradation analysis. In Chapter 6, a recurrent neural network called LSTM will be used in combination with CVA to forecast the impact of faults on a centrifugal compressor.


[bookmark: _Toc506214359]Canonical Variate Analysis for Fault Detection and Diagnosis
[bookmark: _Toc506214360]Abstract
Modern industrial facilities are becoming increasingly complex, with less tolerance for performance deterioration and unplanned breakdowns. Detecting incipient faults and performing root-cause analysis in industrial systems could potentially improve plant safety and availability and reduce maintenance and operation costs. 
Canonical variable analysis (CVA) is a multivariate analysis tool that can be used to detect and diagnose faults for large-scale complex industrial processes. The performance of CVA for diagnosis has been demonstrated by a number of researchers using data captured from experimental test rigs and simulated data. The aim of this chapter is to test the capabilities of CVA for the detection and identification of faults of industrial compressors and gas turbines. The performance of CVA is illustrated with condition monitoring data acquired from operational centrifugal compressors and gas turbines.
[bookmark: _Toc506214361]Introduction
Modern industrial facilities such as natural gas processing plants are increasing in size and complexity as a result of increased mechanization and automation. However, this increased complexity is associated with an enhanced possibility of fault effects that rapidly propagate in non-intuitive ways to cause serious damage to equipment and threaten human health. The growing interest in the reliability of industrial systems and the safety of practitioners and continuing progress in the development of signal-processing techniques have motivated the development of advanced fault-detection and diagnosis methods for complex industrial systems. Fault detection is concerned with detecting the occurrence of an abnormal event as quickly as possible, whereas fault diagnosis refers to the identification of the root causes of a fault as accurately as possible [126].
The complexity of large-scale industrial facilities hinders the development of first-principle dynamic models for health monitoring and fault analysis [4]. Existing condition-monitoring approaches for industrial processes are typically derived from routinely collected system-operating data. With the rapid growth and advancement in sensing and data-acquisition technologies, long-term continuous measurements can be acquired from different sensors mounted on machinery systems. However, the use of condition-monitoring data for reliable fault detection and diagnosis remains a challenge for researchers and engineers.
[bookmark: OLE_LINK38][bookmark: OLE_LINK37][bookmark: OLE_LINK40][bookmark: OLE_LINK39][bookmark: OLE_LINK34][bookmark: OLE_LINK41][bookmark: OLE_LINK31][bookmark: OLE_LINK42][bookmark: _Hlk505379318]A number of multivariate statistical techniques have been developed based on condition-monitoring data for diagnostic health monitoring, such as filtering-based models [127], multivariate time-series models [128] and neural networks [129]. Some of the key challenges in the implementation of these techniques are strongly correlated variables, high-dimensional data, changing operating conditions and inherent system uncertainty [20]. Recent developments in dimensionality reduction techniques have yielded improvements in the identification of faults from highly correlated process variables. Conventional dimensionality reduction methods include principal component analysis (PCA) [130], independent component analysis (ICA) [131] and partial least-squares analysis (PLS) [132]. These basic multivariate methods perform well under the assumption that process variables are time independent. However, this assumption might not hold true for real industrial processes (especially chemical and petrochemical processes) because sensory signals affected by noise and disturbances often show strong correlations between past and future sampling points [20]. Variants of these standard multivariate approaches [133]–[135] solve the time-independence problem have therefore been developed for dynamic processes monitoring. In addition to approaches derived from PCA, ICA and PLS, canonical variable analysis (CVA) is a subspace method that takes serial correlations between different variables into account. CVA is particularly suitable for modelling process working under varying operational conditions principally due to the representation of the system dynamics  [123]. The effectiveness of CVA has been verified by extensive simulation study [123], [136] and data captured from experimental test rigs [28]; however, the effectiveness of CVA in real complex industrial processes has not been fully studied.
[bookmark: _Hlk505391215][bookmark: OLE_LINK189][bookmark: OLE_LINK131][bookmark: OLE_LINK142][bookmark: OLE_LINK135][bookmark: OLE_LINK132][bookmark: OLE_LINK136][bookmark: OLE_LINK137]While much of the focus in chapter 2 is on the fault diagnosis problem, the CVA decomposition is also extremely useful in system identification and performance estimation. In particular, the canonical variables are not only the optimal functions of the past, providing optimal states for system identification, but these same states are also optimal predictors of the future and are optimal for use in performance estimation [122]. CVA has the ability to capture the process dynamics more efficiently than the standard multivariate methods, and the superiority of the CVA over other similar data-driven algorithms has already been demonstrated by several researchers [14], [15]. The CVA performs dimensionality reduction by means of singular value decomposition (SVD), which is a fast and numerically stable matrix operation. As a result, the performance estimation procedure based on CVA can be performed in a fast and stable manner. The SVD could also considerably speed up the computation time when implemented in parallel on arrays of processors, making it feasible to perform large-scale online identification and adaptive control of complex processes [122]. The cases that were studied in this research indicate that the computational load required by a CVA state-space model is acceptable for online applications (the entire training and validation process took only a few minutes on our lab computer). Industrial gas turbines and compressors typically rotate at very high speeds. As a result, fluids to be compressed in the machines are rotating very fast, and any changes in one performance variable can lead to profound and lasting results for the entire system. CVA is a method that can take into account not only the relation between different variables measured but also the correlation between a signal and a delayed version of itself at different lags, making the approach suitable for handling a large number of variables that may be autocorrelated, cross correlated, and collinear [14]. Therefore, a trained CVA model can be used to accurately predict system output variables for the given inputs. Its outputs can be integrated with the maintenance decision to obtain an optimal maintenance strategy. Additionally, due to the complexity of these systems and the random nature of their failures, performance estimation under unhealthy conditions requires the use of statistical models that have to be trained using failure data. Unfortunately, this kind of data is typically scarce because machinery is not allowed to run to failure since an unexpected failure may lead to a breakdown of the entire system or even catastrophic accidents [137]. CVA is especially suitable for situations in which limited data sources are available offline. 
This chapter reports results obtained from studies of the application of CVA to condition-monitoring data captured from operational industrial centrifugal compressors and gas turbines. The objective of this study is to investigate the effectiveness of CVA-based methods for abnormal behaviour detection and fault root-cause identification in real industrial systems. 

[bookmark: _Toc506214362]Methodology
CVA is a dimensionality reduction technique for monitoring machine operation by transforming high-dimensional process data into one-dimensional health indicators. Condition-monitoring data captured from the system operating under healthy conditions are used to calculate the thresholds for normal operating limits. Abnormal operating conditions can be detected when the value of the health indicator exceeds pre-set limits.
[bookmark: OLE_LINK186][bookmark: OLE_LINK187]The objective of CVA is to find the maximum correlation between two sets of variables [4]. To generate two data matrices from the measured data  ( indicates that there are  variables being recorded at each sampling time ), the data are expanded at each sampling time by including  number of previous and  number of future samples to construct the past and future sample vectors  and . 
[bookmark: _Ref494984771]                                                                                           Equation 3‑1
                                                                                     Equation 3‑2
 
To avoid domination of variables with large absolute values, the past and future sample vectors are normalized to the zero-mean vectors  and . Then, the vectors  and  at different sampling times are rearranged according to Equation 3-3 and 3-4 to produce the reshaped matrices  and :
[bookmark: _Ref494834216]                                                       Equation 3‑3
[bookmark: _Ref494834273]                                                        Equation 3‑4
[bookmark: OLE_LINK6]where  and  represents the total number of samples for . Cholesky decomposition is then applied to the past and future matrices and  to configure a Hankel matrix  [138]. Cholesky is used to transfer  and  into a new correlation matrix with reduced dimensionality to allow subsequent calculations to be performed in a stable and rapid manner. To find the linear combination that maximizes the correlation of the two sets of variables, the truncated Hankel matrix  is then decomposed by using singular value decomposition (SVD):
                                                                        Equation 3‑5
where  and are the sample covariance matrices and  is the cross-covariance matrix of and .
If the order of the truncated Hankel matrix  is , then ,  and  have the following form:


[bookmark: OLE_LINK79]
The columns of  and the columns of  are called the left-singular and right-singular vectors of .  is a diagonal matrix; its diagonal elements are called singular values and depict the degree of correlation between the corresponding left-singular and right-singular vectors. The right-singular vectors in  corresponding to the largest  singular values are retained in the truncated matrix . This matrix will be used later to perform dimension reduction on the measured data. 
With the truncated matrix , the  dimensional past vector  is further converted to a reduced -dimensional matrix  (the columns of  are , which are called canonical variates) as follows:
                                                                    Equation 3‑6
                                                                    Equation 3‑7
where  and  are the projection matrices and are computed as follows:  and . The canonical variates  and residual variates  consist of valuable information that is required to construct the health indicators. The state-space matrix  represents the projection of the measurement matrix into the -dimensional space, while the residual space matrix  is associated with system variations not represented by the state space.
[bookmark: OLE_LINK54][bookmark: OLE_LINK55]The health indicators adopted in this study are the Hotelling  and  (SPE) statistics, which were introduced by Hotelling in 1936 [9]. The Hotelling health indicators at sampling time  are calculated as follows:
                                                                                                     Equation 3‑8
                                                                                                     Equation 3‑9
Since the Gaussian distribution does not hold true for non-linear processes, the actual probability density function of the health indicator in this study is calculated by using kernel density estimations (KDE), as proposed by Odiowei and Cao [15]. Given the probability density function (PDF)  of a random variable , the probability that  is smaller than a specific value  is calculated as follows:
                                                                                Equation 3‑10
The estimation of the PDF, , of  through kernel Gaussian estimation is given by the following:
                                                                               Equation 3‑11
[bookmark: OLE_LINK17]where  refers to the number of samples of variable .  is the selected bandwidth of KDE (see [15]). The kernel function utilized in this study is given by the following:
                                                                                                 Equation 3‑12
By replacing random variable  with Hotelling’s  and  statistics, the thresholds for both health indicators are calculated from the PDFs of  and  health indicators for a given critical level, , by solving the following formulas:
                               Equation 3‑13
                                 Equation 3‑14
The upper control limit for normal operating conditions was calculated at the 99% confidence level (i.e.,  = 99%, meaning that the probability that  is smaller than the predefined threshold is 99%), with the aim of minimizing the false-alarm rate of the testing data set. A lower significance level would result in a higher false-alarm during normal operating conditions. High false-alarm rates and slow detections are problems that have plagued the offshore oil and gas industry when dealing with rotating machinery fault detection.  False alarms from equipment monitoring systems result in prolonged outages, damage to process equipment, and production deferments. To eliminate false alarms and detect faults in their early development,  was set to 99% in this study. Machine faults are considered every time the value of the health indicator exceeds the threshold.
In addition to fault time detection,  and  statistics are used to calculate variable contributions. The contribution of variable  () obtained from the state space at time is defined as follows:

                                          Equation 3‑15
where  denotes the column vector of  at time instant .  is the th row of matrix . Similarly, CVA-based residual space contributions at time instant  are computed as follows:

                                      Equation 3‑16
The higher the contribution of a performance variable, the larger the deviation of the specific variable from its normal value. Candidate faulty variables found in the canonical state space are related to large deviations of the system state present in healthy data sets. In contrast, candidate faulty variables found in the canonical residual space are related to new system states generated during the monitoring process that can no longer be fully described by the state-space variates [139]. According to the literature [20], a limitation of CVA models is that the calculated contributions can be excessively sensitive because of the inversion procedure , resulting in incorrect identification of faulty variables. To alleviate this sensitivity, a combination of residual and state-space contributions was adopted for the identification of variables most closely associated with a fault.
[bookmark: _Toc506214363] Case Study 1: Thermocouple Sensor Communication Error/Sensor Failure
[bookmark: _Ref494582513][bookmark: _Ref494582506][bookmark: OLE_LINK10][bookmark: OLE_LINK9][bookmark: OLE_LINK11]Gas turbines have been widely used for power generation since the late 1930s. Industrial gas turbines are equipped with a large variety of sensors for fully automated online supervision of various operating parameters. The measured signals from different sensors are stored and accessed via an e-maintenance system and used for diagnostic and prognostic purposes. The time-series data used in this study were captured from an operational industrial gas turbine (hereafter referred to as gas turbine A). 


[bookmark: _Toc498713020] Table 3‑1 Measured variables for gas turbine A
	ID
	Variable Name
	ID
	Variable Name
	ID
	Variable Name

	1
	Generator output Power

	2
	Generator output Reactive power
	3
	Bell Mouth Inlet Pressure


	4
	Compressor Temperature - Inlet Flange
	5
	IGV Temp Control Reference

	6
	Inlet Heating Control Valve Position (IBH)

	7
	Compressor Inlet Air Mass Flow
	8
	Absolute Compressor Discharge Pressure
	9
	Actual Compressor Ratio


	10
	Compressor Discharge Temperature

	11
	Combustion reference temperature
	12
	Exhaust Thermocouple
1

	13
	Exhaust Thermocouple
2
	14
	Exhaust Thermocouple
3
	15
	Exhaust Thermocouple
4

	16
	Exhaust Thermocouple
5
	17
	Exhaust Thermocouple
6
	18
	Exhaust Thermocouple
7

	19
	Exhaust Thermocouple
8
	20
	Exhaust Thermocouple
9
	21
	Exhaust Thermocouple
10

	22
	Exhaust Thermocouple
11
	23
	Exhaust Thermocouple
12
	24
	Exhaust Thermocouple
13

	25
	Exhaust Thermocouple
14
	26
	Exhaust Thermocouple
15
	27
	Exhaust Thermocouple
16

	28
	Exhaust Thermocouple
17
	29
	Exhaust Thermocouple
18
	30
	Exhaust Thermocouple
19

	31
	Exhaust Thermocouple
20
	32
	Exhaust Thermocouple
21
	33
	Exhaust Thermocouple
22

	34
	Exhaust Thermocouple
23
	35
	Exhaust Thermocouple
24
	36
	Exhaust Thermocouple
25

	37
	Exhaust Thermocouple
26
	38
	Exhaust Thermocouple
27
	39
	Exhaust Thermocouple
28

	40
	Exhaust Thermocouple
29
	41
	Exhaust Thermocouple
30
	42
	Exhaust Thermocouple
31

	43
	Turbine Temperature Wheel space 1ST Stg Fwd inner
	44
	Turbine Temperature Wheel space 1ST Stg Fwd inner
	45
	Turbine Temperature Wheel space 1ST Stg Aft Outer

	46
	Turbine Temperature Wheel space 1ST Stg Aft Outer
	47
	Turbine Temperature Wheel space 1ST Stg Fwd Inner
	48
	Turbine Temperature Wheel space 1ST Stg Fwd Inner

	49
	Turbine Temperature Wheel space 2nd Stg Fwd Outer
	50
	Turbine Temperature Wheel space 2nd Stg Fwd Outer
	51
	Turbine Temperature Wheel space 2nd Stg Aft Outer

	52
	Turbine Temperature Wheel space 2nd Stg Aft Outer
	53
	Turbine Temperature Wheel space 3rd Stg Fwd Outer
	54
	Turbine Temperature Wheel space 3rd Stg Fwd Outer

	55
	Turbine Temperature Wheel space 3rd Stg Aft Outer
	56
	Turbine Temperature Wheel space 3rd Stg Aft Outer
	57
	Gas Fuel Flow 

	58
	Gas fuel stroke reference (FSR)
	59
	Fuel Gas Inlet Pressure Transducer
	60
	Fuel Transfer to Gas temperature

	61
	Position feedback Stop-Ratio Valve
	62
	P2 Pressure Reference

	63
	Gas Control Valve (GCV) 
Position Feedback 

	64
	Premix splitter (FSGX) feedback
	65
	Quaternary GCV Position Feedback
	66
	Differential Pressure 1
 

	67
	Differential Pressure 2

	68
	Lube Oil Header Temperature - LT-TH-1
	69
	Bearing Metal Temp - Turbine Bearing #1

	70
	Bearing Metal Temp - Turbine Bearing #1
	71
	#1 Turbine Journal Bearing Drain Temperature
	72
	[39V-1A] Vibration Sensor - Turbine #1 Bearing

	73
	[39V-1B] Vibration Sensor - Turbine #1 Bearing
	74
	Bearing Metal Temp - Turbine Bearing #2

	75
	Bearing Metal Temp - Turbine Bearing #2


	76
	#2 Turbine Journal Bearing Drain Temperature
	77
	[39V-3A) Vibration Sensor - Turbine #3 Bearing
	78
	[39V-3B) Vibration Sensor - Turbine #3 Bearing

	79
	Bearing Metal Temp - Generator Bearing #1
	80
	Bearing Metal Temp - Generator Bearing #1
	81
	#1 Gen Journal Brg Drain Temperature

	82
	[39V-4A) Vibration Sensor - Generator bearing
	83
	[39V-4B) Vibration Sensor - Generator bearing
	84
	Bearing Metal Temp - Generator Bearing #2

	85
	Bearing Metal Temp - Generator Bearing #1
	86
	#2 Gen Journal Bearing Drain Temperature
	87
	[39V-4A) Vibration Sensor - Generator Bearing

	88
	Bearing Metal Temp - Thrust Active
	89
	Bearing Metal Temp - Thrust Active
	90
	Bearing Metal Temp - Thrust Inactive

	91
	Bearing Metal Temp - Thrust Inactive
	
	
	
	



The engine event log revealed that there was a sensor communication error in thermal couple # 17 from December 13, 2009, onwards. To evaluate the capabilities of the proposed CVA-based method for detecting sensor failure, a training data set captured from gas turbine A with healthy conditions was first utilized to train the CVA model. The training data set contained 1000 observations and was captured between November 2 and December 13. The transformation matrices and threshold limits for health indicators were obtained through the CVA training process. Then, a faulty data set containing 600 sampling points captured between December 10 and December 18 was utilized to test the trained algorithm. 
[bookmark: _Hlk505404477][bookmark: OLE_LINK128][bookmark: OLE_LINK92][bookmark: OLE_LINK150][bookmark: OLE_LINK151][bookmark: OLE_LINK91][bookmark: OLE_LINK28][bookmark: OLE_LINK19]The number of time lags  and  were determined by calculating the autocorrelation function of the root summed squares of all variables against a confidence bound of ± 5%. The values of lags  and  can be found using the ‘autocorr’ function in Matlab [140], and the sample autocorrelation of a signal is plotted against ± 5% confidence intervals by default in Matlab. The CVA model shows very similar fault-detection times and false-alarm rates for different numbers of significant lags (see Appendix D), indicating that the values of  and  are not important for monitoring performance in this work. The number of retained states  is the dominant factor affecting the performance of the proposed fault-detection model. In addition, ± 5% confidence bounds have been widely adopted for the determination of the maximum significant lags of multivariate time series [13], [15], [29], [30], [119]. Therefore, ± 5% confidence levels are employed to determine the values of time lags  and  in this work. The autocorrelation function indicates how long the signal is correlated with itself and thus can be used to determine the maximum number of significant lags. As shown in Figure 3‑1, the sample autocorrelation analysis of the training data demonstrated that the maximum number of significant lags was 25. Therefore, the number of time lags  and  were set to 25 in this study. 
According to the literature [9], [141], different methods can be used to decide the number of retained states . The most commonly used methods are based on the Akaike information criterion (AIC) and the dominant singular values (SV) in the diagonal matrix . Since both statistical indicators ( and ) are utilized for sensor-fault analysis in this study, system variations not detected in the state space will be identified in the residual space and vice versa. Therefore, the accuracy of fault detection becomes insensitive to the number of retained states . To determine the optimal number of , CVA was implemented to perform fault detection for a healthy data set using different values of . The purpose of this test is to find the optimal number of retained states that gives the lowest false-alarm rate under healthy conditions. The calculated false-alarm rate versus the number of retained states is depicted in Figure 3‑2. The false-alarm rate in this study was calculated by dividing the number of false detections by the length of the testing data set. =2 was finally adopted according to the results shown in Figure 3‑2. 
[image: ]
[bookmark: _Ref494584823][bookmark: _Toc506214706][bookmark: _Hlk505458688]Figure 3‑1 Autocorrelation analysis of training data obtained from gas turbine A. Blue lines: upper and lower confidence bounds.

[image: ]
[bookmark: _Ref494590285][bookmark: _Toc506214707]Figure 3‑2 False alarm rate of testing data set with different values of 

[bookmark: OLE_LINK122]Figure 3‑3 shows the results in terms of fault detection. The  indicator detected the fault at the 250th sample, whereas the  statistics detected the fault at the 236th sampling point. Thus, the fault was detected at the 250th sample by both indicators (black dashed line in Figure 3-3). Table 3‑2 summarizes the fault-detection time and false-alarm rate for the  and  statistics. The false-alarm rate was computed as the percentage of sampling points for which the individual statistics exceed their threshold outside faulty conditions. The fault-detection time was considered as the first instant after which the pre-defined threshold was violated by at least 3 consecutive observations.
[bookmark: _Hlk512460176][bookmark: _Hlk512459300][bookmark: OLE_LINK148][bookmark: OLE_LINK149]To further examine the capability of the  and  statistics for faulty variable identification, contribution plots were applied to both the state space and residual space. The detection of faulty variables in the canonical state space indicates that the variations in these variables resulted in changes in the system state compared to healthy operating conditions. Faulty variables found in the residual space are associated with new system states generated during the monitoring process [20]. Figure 3‑5 illustrates the contributions of different process variables during the monitoring process with the variable number on the vertical axis and sampling time on the horizontal axis. This plot was obtained by combining both the state- and residual-space contributions (e.g., ). Figure 3‑4 shows the contributions of the different process variables at the time of fault detection (i.e., the 250th sampling point). Based on the information provided by the traditional 1-D contribution plot, machine operators might mistakenly consider variable 65 to be most associated with the fault. However, Figure 3-5 suggests that variable 28 (e.g., thermal couple #17) is the root cause of the fault because it shows consistent strong bands of contribution over the entire degradation process. Figure 3‑5 also shows that the large contribution of nearly all process variables between the 252nd and 274th sampling points was due to a change in the operating condition of gas turbine A, consistent with the monitoring data shown in Figure 3‑6.
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[bookmark: _Ref494655888][bookmark: _Toc506214708]Figure 3‑3 Fault-detection results for gas turbine A. Solid blue: (upper) and  (lower); Red dashed: thresholds of health indicators

[bookmark: _Ref494806929][bookmark: _Toc498713021]Table 3‑2  and  fault-detection times and false-alarm rates for gas turbine A
	
	

	Fault detection time (step)
	False alarm rate (%)
	Fault detection time (step)
	False alarm rate (%)

	252nd sample
	1.74
	235th sample
	3.33
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[bookmark: _Ref494659427][bookmark: _Toc506214709]Figure 3‑4 A traditional 1-D contribution plot for gas turbine A at the time of fault detection (i.e., 230th sampling point)
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[bookmark: _Ref494656278][bookmark: _Toc506214710]Figure 3‑5 Combined 2-D contribution plot for gas turbine A showing the contributions of the different variables over the entire times series

[image: ]
[bookmark: _Ref494660868][bookmark: _Toc506214711][bookmark: _Hlk505479389]Figure 3‑6 Testing data set captured from gas turbine A for CVA fault detection. This figure shows only the trend of five different performance variables instead of that of 91 variables to give a clear view of how the system behaved before and after the sensor failure. 

[bookmark: _Toc506214364]Case Study 2: Bearing Failure
[bookmark: OLE_LINK32][bookmark: OLE_LINK30][bookmark: OLE_LINK33][bookmark: OLE_LINK35]To further evaluate the performance of the CVA model for fault detection and diagnosis, the model was tested using condition-monitoring data obtained from an operational industrial compressor (hereafter referred to as compressor G). The results in this section suggest that in addition to sensor failure, CVA can also be used to detect system abnormalities caused by mechanical failures. 
The measured time series from compressor G consisted of 204 observations and 12 variables. For this study, all data were captured at a sampling rate of one sample per hour by the machine’s condition-monitoring system. Table 3-3 summarizes all measured variables for this compressor. 
[bookmark: _Hlk497916498]As shown in Figure 3-7, the compressor is in a healthy condition during the first 151 points of the time series. The readings of the four different bearing-temperature sensors start to increase at the 152nd sampling point; the machine continued to run until the 204th sampling point. At that time, site engineers shut down the compressor for inspection and maintenance. 
To evaluate the performance of the proposed fault diagnostic method, the data captured under healthy operating conditions (hereinafter referred to as G1) as shown in Figure 3-7 were used as the training data for the CVA diagnostic model, and the data captured throughout the degradation process (hereafter referred to as G2) were used to validate the trained model. G1 included 151 observations, and G2 contained 53 observations, thus covering the entire fault-degradation process.

[image: ]
[bookmark: _Ref494723880][bookmark: _Toc506214712]Figure 3‑7 Trend of four different bearing temperature sensor measurements of compressor G (temperatures start to increase at approximately the 152nd sampling point)

[bookmark: _Hlk497919340]The number of time lags  and  were determined by calculating the autocorrelation function of the root summed squares of all variables in data set G1 against a confidence bound of ± 5%. As shown in Figure 3-8, the sample autocorrelation analysis of the training data demonstrated that the maximum number of significant lags was 6. Therefore, the number of time lags  and  were set to 6 in this study. 

[image: ]
[bookmark: _Ref494723883][bookmark: _Toc506214713][bookmark: OLE_LINK96]Figure 3‑8 Autocorrelation analysis of data set G1. Blue lines: upper and lower confidence bounds.

Since both the  and  statistics were utilized for fault diagnosis in this study, system variations not detected in the state space are identified in the residual space and vice versa. Therefore, the accuracy of fault detection becomes insensitive to the number of retained states . To select a proper number of  for fault-detection analysis, CVA was implemented to perform fault detection for a healthy data set using different values of . The objective of this test is to find the optimal number of  that results in the lowest false-alarm rate under healthy conditions. Figure 3-9 shows the false-alarm rates for different values of  for the testing data set. The false-alarm rate in this study was calculated by dividing the number of false detections by the length of the testing data. For low values of system order , the false-alarm rate is high because the information in the retained space is not able to fully represent the system dynamics, leading to a large number of  threshold violations. To avoid overfitting of the training data by the CVA model, the value of q cannot be set too large;  was finally adopted in this study to perform fault detection. Figure 3-10 shows the  and  statistics of the training data set G1 and the validation data set G2. The upper control limit for healthy operating conditions was calculated at the 99% confidence level. Both indicators detect the VSD fault at approximately the 153rd sampling point, one hour after the fault occurred.
Table 3‑4 shows the fault-detection time and false-alarm rate for the  and  statistics. The false-alarm rate was computed as the percentage of sampling points for which the individual statistics exceed their threshold under healthy conditions. The fault-detection time was considered as the first instant after which the pre-defined threshold was violated by at least 2 consecutive observations.

[bookmark: _Ref494728204][bookmark: _Ref494937895][bookmark: _Toc498713022]Table 3‑3 Measured variables for compressor G
	ID
	Variable Name
	ID
	Variable Name
	ID
	Variable Name

	1
	Speed
	5
	Radial vibration overall X
	9
	Radial vibration overall Y 1

	2
	Suction pressure
	6
	Radial vibration overall Y
	10
	Radial bearing temperature 2

	3
	Discharge pressure
	7
	Radial bearing temperature 1
	11
	Active thrust bearing temperature 1

	4
	Discharge temperature
	8
	Radial vibration overall X 1
	12
	Inactive thrust bearing temperature 1
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[bookmark: _Ref494735195][bookmark: _Toc506214714]Figure 3‑9 False-alarm rates for different values of retained states 

[image: ]
[bookmark: _Ref494735223][bookmark: _Toc506214715]Figure 3‑10 The (upper) and  (lower) statistics for training data set G1 and validation data set G2. Red dashed: thresholds for health indicators. The fault was detected after the 153rd sampling point


[image: ]
[bookmark: _Ref494751640][bookmark: _Toc506214716]Figure 3‑11 Combined CVA-based 2-D contributions for fault root-cause analysis

[bookmark: _Hlk512420794][bookmark: _Hlk512420876][bookmark: _Hlk512420090][bookmark: OLE_LINK126][bookmark: OLE_LINK127]When a fault occurs in a compressor, it is valuable to identify the components most likely associated with the root cause of the malfunction. To identify the most fault-related variables for compressor G, a combined CVA-based 2-D contribution is shown in Figure 3-11, where the variable name is the vertical axis and sampling time is the horizontal axis. The combined contributions  used equal weights for  and  (). The contribution plot in Figure 3-11 enables accurate identification of the key variables associated with the degradation: 1) radial bearing temperature 1; 2) radial bearing temperature 2; 3) active thrust bearing temperature 1; and 4) inactive thrust bearing temperature 1. These variables show consecutive strong bands of contribution during the degradation process, coincident with the root cause of the failure as stated previously. The information provided by the proposed 2-D contribution plots can facilitate maintenance procedures by enabling the detection of faults in their early development and the reliable identification of faulty components. 

[bookmark: _Ref494801788][bookmark: _Toc498713023]Table 3‑4  and  fault-detection times and false-alarm rates
	
	

	Fault detection time (step)
	False alarm rate (%)
	Fault detection time (step)
	False alarm rate (%)

	153th sampling step
	1.923
	153th sampling step
	1.923



[bookmark: _Toc506214365]Conclusion for CVA-based fault detection and diagnosis
[bookmark: OLE_LINK62][bookmark: OLE_LINK61]In this study, condition-monitoring data acquired from two operational rotating machines were used to test the capabilities of CVA for fault detection and identification. Fault detection was implemented by comparing the values of the  and  statistics with pre-determined thresholds. The faults were successfully detected by the  and  health indicators. Notably, in the first case study, the statistic was more sensitive to the system dynamics in gas turbine A, leading to a higher false-alarm rate than the  indicator. In the second case study, both statistics detected the fault one hour later than the actual fault starting time. Once a fault was detected, combined CVA-based contribution plots were utilized to identify the variables most likely related to the specific fault (e.g., the candidate faulty variables). Overall, the CVA-based contributions were very effective in identifying the root causes of the faults under study. The results also showed that traditional one-dimensional contribution maps can only be used to perform fault identification at one time instant. In contrast, 2-D contribution plots, which assemble the variations at multiple time instants, can clearly demonstrate the contributions of different process variables over the entire fault-propagation process and can provide greater insight into the root causes of the faults and how the faults propagate to the remaining parts of the system. A consideration for future work is to alleviate the smearing effect in 2-D contribution plots and reduce the number of reported faulty variables, thereby allowing for more accurate fault identification.


[bookmark: _Toc506214366]Canonical Variate Analysis for System Identification under Healthy and Faulty Operating Conditions
[bookmark: _Toc506214367]Abstract
[bookmark: OLE_LINK1][bookmark: OLE_LINK51][bookmark: OLE_LINK50]Condition monitoring of gas turbines and compressors could potentially improve plant safety and availability and reduce unscheduled downtime and maintenance costs. To accomplish these goals, incipient faults must be identified, and system behaviour must be predicted to enable correct planning of maintenance according to the condition of the system. This study proposes a dynamic process-monitoring method based on canonical variate analysis (CVA) used to perform system identification and performance estimation under both healthy and faulty conditions. Process data obtained from two operational industrial gas turbines were used to assess the capabilities of CVA to estimate the performance of a system for specified future input conditions. This information can be used to improve maintenance and production planning and reduce unscheduled downtime. The results show that the proposed method effectively provides estimations of the future behaviour of the system under both healthy and faulty conditions. 
[bookmark: _Toc506214368] Introduction
Modern industrial natural gas-processing plants are becoming increasingly complex due to the use of different types of equipment. This complexity hinders the development of accurate first-principle failure models for large-scale industrial facilities [142]. These challenges have motivated the development of condition-monitoring approaches for industrial facilities based on routinely observed system-process data. Recent advances in instrument technologies and signal-processing techniques have resulted in improvements in industrial condition-monitoring applications enabling large amounts of condition-monitoring data to be collected and analysed to obtain information useful for improving maintenance decisions. 
[bookmark: OLE_LINK43][bookmark: OLE_LINK48][bookmark: OLE_LINK46][bookmark: _Hlk505379432][bookmark: OLE_LINK49]Subspace system-identification methods for process monitoring have attracted increasing interest in the past few decades. Conventional multidimensional subspace methods such as Partial Least Squares (PLS), the Output-Error State-Space Model (MOESP) and Principal Component Analysis (PCA) can capture the correlations between different measured variables and are more effective than univariate methods for large industrial process monitoring [6]. These basic multivariate methods perform well under the assumption that the process variables are time independent. However, this assumption might not hold true for real industrial processes (especially chemical and petrochemical processes) because sensory signals affected by noise and disturbances often show strong correlations between past and future sampling points [13]. Variants of the standard multivariate approaches, such as Dynamic Principal Component Analysis (DPCA) [8] and Dynamic Partial Least Squares (DPLS), that use time-lagged variables have been developed to consider the dynamic nature of the monitored process. Although dynamic versions of the standard multivariate methods have been successfully applied to systems with autocorrelated measurements and varying operational conditions, other techniques, such as Canonical Variate Analysis (CVA), can achieve a better representation of the system dynamics when applied to changing operating conditions [13], [16].
[bookmark: _Hlk512458244]In Chapter 3, the capabilities of CVA for fault detection and diagnosis were tested using condition-monitoring data captured from industrial gas turbines. When a fault is detected, and the fault severity is not critical, machine operators may be more interested in predicting future system behaviour so that maintenance can be correctly planned based on the condition of the system. In this investigation, a dynamic process-monitoring method based on CVA was used to perform system identification and performance estimation for industrial gas turbines under both healthy and faulty operating conditions. The results indicate that CVA can be used to accurately build state-space models of complex dynamic systems from monitored input–output data, and these state-space models can be used to estimate how the system is affected by the faults and will behave in the future under faulty conditions.
[bookmark: _Toc506214369] Methodology
A detailed description of the CVA procedure for fault diagnosis was provided in Chapter 3. In addition to fault diagnosis, CVA can also be used to build a state-space model from observed input-output data. The model can then be used to estimate the performance of the system for specified future input conditions. Given system input time-series  and output time-series , the linear state-space model is built as follows: 
[bookmark: _Ref494917720]                                                                                      Equation 4‑1
[bookmark: _Ref494917738]                                                                            Equation 4‑2
where  is the state vector with order ;  and  are model coefficient matrices; and  and  are independent white noise. According to the literature [4], if the number of retained states  is no smaller than the actual order of the system, we can substitute the matrix  with the state variates  introduced in Chapter 3. The authors of [122] suggested the use of multivariate regression for the calculation of the unknown coefficient matrices  and :
[bookmark: OLE_LINK65][bookmark: _Ref495175897]                                              Equation 4‑3
[bookmark: OLE_LINK73][bookmark: OLE_LINK66]The procedure for system identification and performance estimation of a faulty system using the model described above can be summarized as follows:
Step 1: Determine the system inputs  ( consists of two variables: a manipulated variable (suction throttling valve position) and an unmanipulated variable (suction temperature)) and outputs  (measured performance variables). 
Step 2: Obtain a training data set from the compressor during the early stages of deterioration. Construct a state-space model based on the obtained training data. Model coefficient matrices can be calculated according to equation 4-3. The constructed CVA-based state-space model can be used to predict system outputs in the future  for future expected input conditions .
Step 3: Test the capabilities of the CVA model to estimate the performance deterioration of the system under faulty conditions by capturing from the engine a validation data set that covers the entire degradation process. Then, feed the CVA model the same input conditions used during the total duration of the validation data set. Predict the values of the system outputs as per equations 4-1 to 4-2. Compare the predicted outputs with the actual measured outputs in the validation data set to evaluate the predictive accuracy of the CVA model. 
[bookmark: OLE_LINK152][bookmark: OLE_LINK141]The model used in this study is a time-invariant model, which shows good modelling performance for linear processes and faults for which severity evolves slowly over time compared with the prediction timeframe, but many processes are nonlinear and often show rapid changes in system dynamics. A good solution to the aforementioned problem is to adopt a recursive method for model adaptation to changes in the modes of operation of time-varying processes. The aforementioned limitations associated with time-invariant predictive models can be properly alleviated through the proposed adaptive canonical variate analysis, which will be detailed in chapter 5.
[bookmark: _Toc506214370]Case Study 1: CVA for System Identification under Healthy Operating Conditions
[bookmark: _Toc506214371]Data Acquisition
[bookmark: OLE_LINK53]Condition-monitoring data captured from an operational industrial gas turbine (hereafter referred to as gas turbine C) were first used to test the capabilities of the CVA-based subspace method for system identification. In this study, all data were obtained at a sampling rate of one observation every twenty minutes. The measured data consisted of 2 input variables (inlet guide vane (IGV) control reference and gas fuel stroke reference (FSR)) and 85 different output variables (see Table 4‑1). IGV is used to control air flow into the gas turbine while attempting to maintain the air-fuel mixture within a stable combustion range. FSR is used for General Electric manufactured gas turbine control systems to position the fuel control valve. Figure 4‑1 shows the trends in different performance variables of the gas turbine under study. The engine was operating under healthy conditions over the entire monitored time series. 
[image: ]
[bookmark: _Ref494939332][bookmark: _Toc506214717][bookmark: OLE_LINK56]Figure 4‑1 Trends in the performance variables of gas turbine C (under healthy operating conditions)

[bookmark: _Ref494974324][bookmark: _Toc498713024]

[bookmark: OLE_LINK64]Table 4‑1 List of variables used for system identification and performance estimation
	[bookmark: _Hlk499662322]ID
	Variable Name
	ID
	Variable Name
	ID
	Variable Name

	1
	Generator output Power

	2
	Generator output Reactive power
	3
	IGV Temp Control Reference

	4
	Compressor Inlet Air Mass Flow
	5
	Absolute Compressor Discharge Pressure
	6
	Actual Compressor Ratio


	7
	Compressor Discharge Temperature

	8
	Combustion reference temperature
	9
	Exhaust Thermocouple
1

	10
	Exhaust Thermocouple
2
	11
	Exhaust Thermocouple
3
	12
	Exhaust Thermocouple
4

	13
	Exhaust Thermocouple
5
	14
	Exhaust Thermocouple
6
	15
	Exhaust Thermocouple
7

	16
	Exhaust Thermocouple
8
	17
	Exhaust Thermocouple
9
	18
	Exhaust Thermocouple
10

	19
	Exhaust Thermocouple
11
	20
	Exhaust Thermocouple
12
	21
	Exhaust Thermocouple
13

	22
	Exhaust Thermocouple
14
	23
	Exhaust Thermocouple
15
	24
	Exhaust Thermocouple
16

	25
	Exhaust Thermocouple
17
	26
	Exhaust Thermocouple
18
	27
	Exhaust Thermocouple
19

	28
	Exhaust Thermocouple
20
	29
	Exhaust Thermocouple
21
	30
	Exhaust Thermocouple
22

	31
	Exhaust Thermocouple
23
	32
	Exhaust Thermocouple
24
	33
	Exhaust Thermocouple
25

	34
	Exhaust Thermocouple
26
	35
	Exhaust Thermocouple
27
	36
	Exhaust Thermocouple
28

	37
	Exhaust Thermocouple
29
	38
	Exhaust Thermocouple
30
	39
	Exhaust Thermocouple
31

	40
	Turbine Temperature Wheel space 1ST Stg forward inner
	41
	Turbine Temperature Wheel space 1ST Stg forward inner
	42
	Turbine Temperature Wheel space 1ST Stg Aft Outer

	43
	Turbine Temperature Wheel space 1ST Stg Aft Outer
	44
	Turbine Temperature Wheel space 1ST Stg forward Inner
	45
	Turbine Temperature Wheel space 1ST Stg forward Inner

	46
	Turbine Temperature Wheel space 2nd Stg forward Outer
	47
	Turbine Temperature Wheel space 2nd Stg forward Outer
	48
	Turbine Temperature Wheel space 2nd Stg Aft Outer

	49
	Turbine Temperature Wheel space 2nd Stg Aft Outer
	50
	Turbine Temperature Wheel space 3rd Stg forward Outer
	51
	Turbine Temperature Wheel space 3rd Stg forward Outer

	52
	Turbine Temperature Wheel space 3rd Stg Aft Outer
	53
	Turbine Temperature Wheel space 3rd Stg Aft Outer
	54
	Gas Fuel Flow 

	55
	Gas fuel stroke reference (FSR)
	56
	Fuel Gas Inlet Pressure Transducer
	57
	Fuel Transfer to Gas temperature

	58
	P2 Pressure Reference

	59
	Gas Control Valve (GCV) 
Position Feedback 
	60
	Premix splitter (FSGX) feedback

	61
	Quaternary GCV Position Feedback
	62
	Differential Pressure 1
 
	63
	Differential Pressure 2


	64
	Lube Oil Header Temperature - LT-TH-1
	65
	Bearing Metal Temp - Turbine Bearing #1
	66
	Bearing Metal Temp - Turbine Bearing #1

	67
	#1 Turbine Journal Bearing Drain Temperature
	68
	[39V-1A] Vibration Sensor - Turbine #1 Bearing
	69
	[39V-1B] Vibration Sensor - Turbine #1 Bearing

	70
	Bearing Metal Temp - Turbine Bearing #2
	71
	Bearing Metal Temp - Turbine Bearing #2
	72
	#2 Turbine Journal Bearing Drain Temperature

	73
	[39V-3A) Vibration Sensor - Turbine #3 Bearing
	74
	[39V-3B) Vibration Sensor - Turbine #3 Bearing
	75
	Bearing Metal Temp - Generator Bearing #1

	76
	Bearing Metal Temp - Generator Bearing #1
	77
	#1 Gen Journal Bearing Drain Temperature
	78
	[39V-4A) Vibration Sensor - Generator bearing

	79
	[39V-4B) Vibration Sensor - Generator bearing
	80
	Bearing Metal Temp - Generator Bearing #2
	81
	Bearing Metal Temp - Generator Bearing #2

	82
	#2 Gen Journal Bearing Drain Temperature
	83
	[39V-4A) Vibration Sensor - Generator Bearing
	84
	Bearing Metal Temp - Thrust Active

	85
	Bearing Metal Temp - Thrust Active
	86
	Bearing Metal Temp - Thrust Inactive
	87
	Bearing Metal Temp - Thrust Inactive

	

	
	
	
	
	


[bookmark: _Toc506214372]Training/Validation Split and Selection of Tuning Parameters
[bookmark: OLE_LINK2][bookmark: OLE_LINK3][bookmark: OLE_LINK59]As mentioned in Section 4.3, a training data set obtained from the engine operating under healthy conditions is required to calculate the model coefficient matrices in Equations 4-1 and 4-2. After the state-space model coefficient matrices are determined, a CVA model can be built based on a training data set, and the trained model can be subsequently used to make predictions on the validation data. As shown in Figure 4‑1, the measured time series was split into two parts: a training data set containing 260 observations and a validation data set containing 300 observations. The training data were first used to construct a dynamic state-space model by following the procedures described in Section 4.4.1. 
To build the past and future sample vectors  and  in Equation 3-1 and Equation 3-2, it is necessary to choose the optimal number of time lags  and . The procedure to determine the values of  and  in this investigation is similar to that used in Chapter 3. The autocorrelation function of the root summed squares of all variables in the training data set against a confidence bound of ± 5% was used to calculate how long the signal is correlated with itself and to determine the maximum number of significant lags. As shown in Figure 4‑2, sample autocorrelation analysis of the training data demonstrated that the maximum number of significant lags was 16. Therefore, the number of time lags  and  were set to 16. To find the optimal number of retained states  that maximizes the prediction accuracy, a CVA model built based on the training data set was first utilized to make predictions on the training data set using different numbers of . the mean prediction error for each output variable was calculated for different values of . Then, the averaged absolute mean percentage errors (MAPE) for all output variables were plotted against the number of retained states in Figure 4‑3. In this figure, the MAPE for each performance variable was calculated by computing the mean of the difference between the predicted and measured signals:
[bookmark: _Ref495024430]                                                                                             Equation 4‑4
where  denotes the measured value of the th variable at sampling time ,  represents the estimated value of the th variable  at time , and  denotes the total number of observations in the training data set. As shown in Figure 4-3, the average prediction error increases as the system order increases, mainly due to the inaccurate initial state prediction. The model of order 1 estimates the initial states accurately and produces very low oscillations in the initial estimations. In models with higher orders, the initial oscillations are higher, and the attenuation takes more time, which significantly increases the prediction error of the model produces. Therefore,  was finally set to 1 to achieve the minimum model error. Based on the selected model parameters, a CVA-based prediction model was built and used to estimate the outputs in the validation data set. 

 [image: ]
[bookmark: _Ref494996636][bookmark: _Toc506214718]Figure 4‑2 Autocorrelation analysis of the training data obtained from gas turbine C. Blue lines: upper and lower confidence bounds.
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[bookmark: _Ref495009937][bookmark: _Toc506214719]Figure 4‑3 Averaged prediction error for all output variables for different values of 
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[bookmark: _Ref495014360][bookmark: _Toc506214720]Figure 4‑4 Prediction of generator output power
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[bookmark: _Toc506214721][bookmark: OLE_LINK58]Figure 4‑5 Prediction of thermocouple temperature (#19)
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[bookmark: _Ref495014364][bookmark: _Toc506214722]Figure 4‑6 Prediction of bearing metal temperature – generator bearing #1 

[bookmark: OLE_LINK98][bookmark: OLE_LINK97]Figures 4‑4 to Figure 4‑6 show the measurements observed for the selected significant turbine variables and the corresponding estimates generated by the trained CVA model. For each of the demonstrated process variables, large deviations from the actual measurements at the beginning of the estimation were observed. This error was caused by inaccurate estimation of the initial system state  but was compensated rapidly after a few iterations. Notably, the trained model's ability to respond to time-varying operating conditions is limited because model coefficient matrices  and  are unchanged during the total duration of estimation. This problem can be solved by using adaptive CVA as detailed in the next chapter. Two performance metrics, 1) mean absolute error (MAE) and 2) mean absolute percentage error (MAPE), were used to evaluate the performance of the predictive model. Interested readers are referred to [143] for further information about the two metrics. The MAE and MAPE of all output variables are summarized in Table 4‑2. The MAPEs are significantly larger for variable numbers 2, 60 and 61 because the actual measurements for these variables are close to zero. The averaged MAPE for all 85 variables was 13.57%, and the averaged MAPE for all variables excluding variable numbers 2, 60 and 61 was 2.2%. Other than the inaccurate estimations during the early stages of prediction and under time-varying conditions, the predicted output variables are close to the actual measurements, indicating that the model accurately predicts system behaviour based on expected future operating conditions.
[bookmark: _Ref495024305][bookmark: _Toc498713025]Table 4‑2 Mean absolute percentage error (MAPE) and mean absolute error (MAE) for each output variable (unit: %)
	[bookmark: _Hlk497862818]Variable ID
ID
	1
	2
	3
	4
	5
	6

	MAPE
	0.062
	1.1417
	N/A
	0.0083
	0.0085
	0.0101

	MAE
	4.5155
	27.6784
	N/A
	3.5361
	0.1042
	0.1157

	Variable ID
ID
	7
	8
	9
	10
	11
	12

	MAPE
	0.0108
	0.0085
	0.0071
	0.0076
	0.0079
	0.0075

	MAE
	3.9217
	9.0214
	4.1952
	4.381
	4.4003
	4.2352

	Variable ID
ID
	13
	14
	15
	16		24
	17
	18

	MAPE
	0.009
	0.0103
	0.0099
	0.009
	0.0106
	0.0083

	MAE
	5.0243
	5.6421
	5.514
	4.9037
	5.768
	4.9064

	Variable ID
ID
	19
	20
	21
	22
	23
	24

	MAPE
	0.0063
	0.0146
	0.008
	0.0107
	0.0108
	0.0099

	MAE
	3.7946
	7.9549
	4.5289
	5.9233
	5.8805
	5.4936

	Variable ID
ID
	25
	26
	27
	28
	29
	30

	MAPE
	0.0115
	0.0081
	0.0089
	0.0078
	0.0082
	0.0083

	MAE
	6.1333
	4.5172
	4.8923
	4.264
	4.5388
	4.5615

	Variable ID
ID
	31
	32
	33
	34
	35
	36

	MAPE
	0.0081
	0.0083
	0.0079
	0.0097
	0.0084
	0.0071

	MAE
	4.65
	4.4819
	4.4076
	5.4745
	4.5905
	3.6312

	Variable ID
ID
	37
	38
	39
	40
	41
	42

	MAPE
	0.0066
	0.0092
	0.0077
	0.0116
	0.0105
	0.0129

	MAE
	3.9069
	5.113
	4.4556
	4.6504
	4.3923
	5.841

	Variable ID
ID
	43
	44
	45
	46
	47
	48

	MAPE
	0.0121
	0.0114
	0.0101
	0.2932
	2.54
	0.0356

	MAE
	5.301
	4.2273
	4.304
	19.8258
	1.99
	4.7956

	Variable ID
ID
	49
	50
	51
	52
	53
	54

	MAPE
	0.0139
	0.0139
	0.0146
	0.0198
	0.0179
	0.0087

	MAE
	5.3462
	5.5941
	5.8416
	5.3854
	4.8012
	0.0696

	Variable ID
ID
	55
	56
	57
	58
	59
	60

	MAPE
	N/A
	0.0042
	0.0013
	0.001
	0.2002
	7.0826

	MAE
	N/A
	0.1149
	0.137
	0.0241
	1.0025
	2.199

	Variable ID
ID
	61
	62
	63
	64
	65
	66

	MAPE
	1.4408
	0.0244
	0.0395
	0.0038
	0.0555
	0.0556

	MAE
	0.4566
	10.3991
	27.5374
	0.1786
	2.7039
	2.7016

	Variable ID
ID
	67
	68
	69
	70
	71
	72

	MAPE
	0.0027
	0.083
	0.0832
	0.019
	0.0224
	0.0029

	MAE
	0.1902
	0.4046
	0.3739
	3.6855
	4.4504
	0.2187

	Variable ID
ID
	73
	74
	75
	76
	77
	78

	MAPE
	0.051
	0.0925
	0.0123
	0.0134
	0.0031
	0.0252

	MAE
	0.1774
	0.4261
	1.0163
	1.1453
	0.2058
	0.1347

	Variable ID
ID
	79
	80
	81
	82
	83
	84

	MAPE
	0.0775
	0.0019
	0.0018
	0.0032
	0.0576
	0.0032

	MAE
	0.1664
	0.1587
	0.1526
	0.2116
	0.2034
	0.2263

	Variable ID
ID
	85
	86
	87
	
	
	

	MAPE
	0.0042
	0.0565
	0.0026
	
	
	

	MAE
	0.2842
	2.7264
	0.1825
	
	
	



[bookmark: _Toc506214373]Case Study 2: CVA for System Identification under Faulty Conditions
[bookmark: _Toc506214374]Data Acquisition
[bookmark: _Hlk496809035]In addition to system identification under healthy operating conditions, a CVA-based subspace model can be used to estimate the behaviour of a system under faulty conditions. The condition-monitoring data used in this investigation were captured from an operational industrial gas turbine (hereafter referred to as gas turbine B). The data used in this study consisted of 144 observations (see Figure 4-7). Figure 4-7 only shows the trend of five different performance variables instead of 91 variables in order to give a clear view of how the system behaved before and after the burner failure. The sampling rate was one observation per minute. The engine was in a healthy condition during the first 81 points of the time series. As shown in Figure 4-8, the temperature of pilot burner TC260 suddenly increased by approximately 60 degrees Fahrenheit at the 82nd sampling point and gradually increased to 670 degrees Fahrenheit by the end of the time series. Most power-generating gas turbines employ several combustors. Ideally, each of these combustors should have relatively stable and uniform combustion temperatures (burner tip temperatures); oscillations in combustion temperatures could result in instabilities in engine operation [144]. 
[image: ]
[bookmark: _Ref495173129][bookmark: _Toc506214723]Figure 4‑7 Five different performance variables (normalized) of gas turbine B before and after the burner fault. The burner fault occurred at the 82nd sampling point, and the engine was tripped at the 144th sampling point. All sensor measurements were normalized to provide a clear view of the trends for different variables.

[image: ]
[bookmark: _Toc506214724]Figure 4‑8 Trends in the temperature of the unhealthy burner (TC260) 

[bookmark: _Toc506214375]Results Obtained for Fault Detection 
[bookmark: _Hlk498008098][bookmark: OLE_LINK63][bookmark: OLE_LINK60]Fault detection is the starting point of prediction of deterioration in a faulty system [13]. A healthy data set (see Figure 4-9) containing 115 observations acquired from the engine operating under healthy conditions was first utilized to train the fault-detection algorithm detailed in Equations 3‑1 to 3‑14. The numbers of time lags  and  were determined by calculating the autocorrelation function of the root summed squares of all variables in the healthy data set against a confidence bound of ± 5%. As shown in Figure 4-10, the sample autocorrelation analysis of the training data demonstrated that the maximum number of significant lags was 5. Therefore, the number of time lags  and  were set to 5. To determine the optimal number of retained states  for fault-detection analysis, CVA was implemented to perform fault detection for a healthy data set using different values of . The objective of this test is to find the optimal number of  that results in the lowest false-alarm rate under healthy conditions. The calculated false-alarm rate versus the number of retained states is shown in Figure 4-11. For low values of , the false-alarm rate is relatively high because the information retained in the canonical space is not sufficient to fully represent the system dynamics. Therefore, =6 was adopted in this case study to minimize the false-alarm rate. Figure 4-12 shows the monitoring charts for the detection of burner fault using the algorithm described in Section 3.3. The fault start time is marked as vertical dashed black lines. Both the  and  statistics detected the fault at the same time (83rd sampling point), one minute after the fault occurred.

[image: ]
[bookmark: _Toc506214725]Figure 4‑9 Training data set for fault detection. In order to provide a clear view of the trends for different variables, this figure shows only five different performance variables (normalized) instead of 91 variables.

[image: ]
[bookmark: _Toc506214726]Figure 4‑10 Autocorrelation analysis of gas turbine B. Blue lines: upper and lower confidence bounds.

[image: ]
[bookmark: _Toc506214727]Figure 4‑11 False alarm rate of the healthy data set with different values of 

[image: ]
[bookmark: _Toc506214728]Figure 4‑12 Fault detection results for gas turbine B. Solid blue: (upper) and  (lower); Red dashed: thresholds for health indicators

[bookmark: _Toc506214376][bookmark: OLE_LINK120]CVA Model Representing the Engine under Healthy Operating Conditions
After the fault was detected, the first 81 observations in Figure 4-7 were used to construct a CVA subspace model of the healthy system using the algorithm described in Section 4.3. The model representing the engine under healthy operating conditions was fed the system inputs used during the entire degradation process to predict the system outputs. This allowed the estimation of the output variables for the same input conditions used throughout the degradation process but assuming the absence of faults. The data used to construct the model included the 2 system input variables shown in Table 4-3 and the 50 system output variables listed in Table 4-4. 
[bookmark: _Toc498713026] Table 4‑3 List of input variables
	ID
	Variable Name
	ID
	Variable Name

	1
	Heat energy input
	2
	Gas fuel input



[bookmark: _Toc498713027]Table 4‑4 List of output variables
	ID
	Variable Name
	ID
	Variable Name

	3
	liquid fuel energy (primary)
	28
	Power turbine exhaust temperature 4

	4
	liquid fuel energy (secondary)
	29
	Power turbine exhaust temperature 5

	5
	Generator power output 
	30
	Power turbine exhaust temperature 6

	6
	Gas generation engine speed
	31
	Power turbine bearing temperature 1

	7
	Corrected gas generation speed (to ISO)
	32
	Power turbine bearing temperature 2

	8
	Burner casing temperature 1
	33
	Power turbine bearing temperature 3

	9
	Burner casing temperature 2
	34
	Pilot burner tip temperature (TC256)

	10
	Turbine inlet pressure
	35
	Pilot burner tip temperature (TC257)

	11
	Turbine lubrication oil pressure
	36
	Pilot burner tip temperature (TC258)

	12
	Power turbine speed 
	37
	Pilot burner tip temperature (TC259)

	13
	Lube oil pressure 1
	38
	Pilot burner tip temperature (TC260)

	14
	Lube oil pressure 2
	39
	lube oil temperature (TT66)

	15
	Lube oil pressure 3
	40
	lube oil temperature (TT66A)

	16
	Compressor discharge pressure
	41
	lube oil temperature (TT66B)

	17
	Drive end unit bearing temperature 1
	42
	lube oil temperature (TT7)

	18
	Drive end unit bearing temperature 2
	43
	Drive end bearing vibration 1

	19
	Generator winding temperature 1
	44
	Drive end bearing vibration 2

	20
	Generator winding temperature 2
	45
	Drive end bearing vibration 3

	21
	Generator winding temperature 3
	46
	Drive end bearing vibration 4

	22
	Generator winding temperature 4
	47
	Drive end bearing current 

	23
	Generator winding temperature 5
	48
	Drive end bearing voltage

	24
	Generator winding temperature 6
	49
	Drive end bearing vibration 4

	25
	Power turbine exhaust temperature 1
	50
	Drive end bearing vibration 5

	26
	Power turbine exhaust temperature 2
	51
	Drive end bearing vibration 6

	27
	Power turbine exhaust temperature 3
	52
	Drive end bearing vibration 7



To select the optimal model order  for system identification, the trained CVA model was first used to predict system outputs for the healthy data set for a range of values of . The purpose of this analysis was to find the optimal value of  that minimizes the predictive error, which is not necessarily the same value selected in Section 4.5.2. Figure 4-13 shows the results obtained for the selection of . The errors are almost the same when , and  was finally set to 2 for subsequent analysis.
[image: ]
[bookmark: _Toc506214729][bookmark: OLE_LINK99]Figure 4‑13 Summed prediction error (MAPE) for all output variables for different values of 

[image: ]
[bookmark: _Toc506214730]Figure 4‑14 Predicted pilot burner tip temperature of a healthy burner (TC257) using the healthy CVA model 


[image: ]
[bookmark: _Toc506214731]Figure 4‑15 Performance degradation in TC260. This figure shows the predicted pilot burner tip temperature of the unhealthy burner (TC260) using the healthy CVA model.

The temperatures of burners TC257 and TC260 predicted by the healthy CVA model are shown in Figure 4-14 and Figure 4-15. In Figure 4-14, the predicted outputs highly coincide with actual measured output values, indicating that the estimation for the healthy burner (TC257) was accurate after the appearance of a fault. This accuracy was obtained because the model was built under the assumption that the engine was still running under normal conditions after the 82nd sampling point. The predictions obtained for the faulty burner TC260 using the healthy model and its actual measurements are shown in Figure 4-15. After the appearance of the fault, TC260’s actual temperature is significantly higher than the predicted outputs, indicating that the fault has resulted in a temperature rise in TC260. The predicted values of TC260 suggest that its temperature should remain at approximately 560 degrees Fahrenheit if the engine was operating under healthy conditions. The healthy CVA model built in this section can be used by site engineers to evaluate the deterioration of the system’s performance by comparing the actual measurements with the predicted outputs assuming healthy operation.
[bookmark: _Toc506214377]CVA Model Representing the Engine under Faulty Operating Conditions
[bookmark: OLE_LINK117][bookmark: OLE_LINK116]After a fault is detected, site operators may be more interested in how the fault will progress, how the system will behave under faulty operating conditions, and how the fault will affect the safety of plant operations and the quality of the product. To predict fault evolution and evaluate the impact of the fault on system operation, the system-identification method described in Section 4.3 was applied after the burner fault was detected by the algorithm detailed in Equations 3‑1 to 3‑14. A data set obtained during the early stages of deterioration was used to build and train a CVA-based state-space model. Then, the trained model was fed with the same system inputs used throughout the degradation process to provide estimations of the system outputs. The predicted system’s key performance variables, such as burner tip temperature (TC260), power turbine exhaust temperature and generator output power, are shown in Figures 4-16 to 4-18. Figure 4-16 indicates that the faulty model can be used to predict fault evolutions accurately using only a few data points captured at early degradation stages for training, thereby allowing site engineers to estimate how the faulty component will behave after the appearance of faults. Figure 4-17 and Figure 4-18 show that the faulty model can also be utilized to predict the engine’s key performance variables, thereby allowing site engineers to evaluate how the detected fault affects the safety of the engine and product quality.

[image: ]
[bookmark: _Toc506214732]Figure 4‑16 Predicted pilot burner tip temperature (TC260) using a faulty CVA model

[image: ]
[bookmark: _Toc506214733]Figure 4‑17 Predicted power turbine exhaust temperature using a faulty CVA model

[image: ]
[bookmark: _Toc506214734]Figure 4‑18 Predicted generator output power using a faulty CVA model

[bookmark: _Hlk497870972]Table 4-5 shows the precision analysis for the prediction error of the proposed CVA method. The faulty model was validated by comparing the predicted outputs and actual measurements. The averaged mean absolute percentage error (MAPE) was 4.866% for the faulty model.


[bookmark: _Toc498713028]Table 4‑5 Mean absolute percentage error (MAPE) for different output variables (unit: %)
	Variable ID
	3
	4
	5
	6
	7
	8

	MAPE
	4.3
	5.74
	6.45
	1.56
	1.61
	20.93

	Variable ID
	9
	10
	11
	12
	13
	14

	MAPE
	2.85
	3.59
	1.56
	1.55
	1.55
	1.52

	Variable ID
	15
	16
	17
	18
	19
	20

	MAPE
	2.17
	2.52
	2.64
	8.06
	8.26
	8.26

	Variable ID
	21
	22
	23
	24
	25
	27

	MAPE
	6.06
	4.32
	5.61
	2.48
	1.28
	1.57

	Variable ID
	28
	29
	30
	31
	32
	33

	MAPE
	1.51
	1.33
	1.73
	2.06
	1.97
	1.66

	Variable ID
	34
	35
	36
	37
	38
	39

	MAPE
	2.45
	2.36
	2.47
	3.09
	1.92
	2.27

	Variable ID
	40
	41
	42
	43
	44
	45

	MAPE
	2.25
	2.31
	2.38
	4.56
	4.04
	12.94

	Variable ID
	46
	47
	48
	49
	50
	51

	MAPE
	8.38
	7.22
	5.33
	5.62
	17.1
	20.18

	Variable ID
	52
	
	
	
	
	

	MAPE
	14.85

	
	
	
	
	



[bookmark: _Toc506214378]Conclusion for CVA-based system identification and performance estimation
[bookmark: _Hlk483415746][bookmark: _Hlk497943178]Condition-monitoring data acquired from two operational gas turbines were used to test the capabilities of CVA to estimate performance deterioration and predict the behaviour of the system for expected future system inputs. The first gas turbine was operated under healthy but time-varying conditions. The CVA subspace model represented the system dynamics operating under changing conditions. The second engine was operated under faulty operating conditions. The CVA model constructed using data captured under healthy conditions can be used by machine operators to evaluate how the faulty component has deviated from its normal operating range, which can aid the estimation of the performance deterioration of the faulty system. The CVA model obtained using data captured from early stages of degradation can be used to predict the faulty evolution and evaluate how the system will behave after the appearance of a fault. Although large and fast oscillations were observed in the initial estimations, the overall prediction error was low in both cases studied. The information provided by the proposed method can be used to plan maintenance to minimize plant power consumption and maximize product quality and plant safety and reliability.


[bookmark: _Toc506214379][bookmark: OLE_LINK52]Adaptive Canonical Variate Analysis for Improved Performance Estimation with Application to Industrial Rotating Machines 
[bookmark: _Toc506214380]Abstract
[bookmark: _Hlk512523277][bookmark: OLE_LINK192]An adaptive multivariate process-monitoring approach is developed to improve the accuracy of traditional canonical variate analysis (CVA) in predicting the performance of industrial rotating machines under time-varying and faulty operating conditions. An adaptive forgetting factor is adopted to update the covariance and cross-covariance matrices of past and future measurements. The forgetting factor is adjusted according to the Euclidean norm of the residual between the predicted model outputs and the actual measurements. The approach was evaluated using process data obtained from an operational industrial gas turbine and a centrifugal compressor. The results show that the proposed method can be effectively used to predict the performance of industrial rotating machines under time-varying and faulty operating conditions.
[bookmark: _Toc506214381] Introduction
[bookmark: _Hlk512523553]Multivariate statistical techniques such as principal component analysis (PCA) [130], partial least squares (PLS) [145] and canonical variate analysis (CVA) [13] have been widely applied for the detection of abnormalities in large industrial processes. Multivariate subspace identification models based on PCA, PLS or CVA have attracted attention over the past decades because they can be utilized for process monitoring, modelling and system identification. The authors of [120] demonstrated that system-identification models based on CVA outperform modelling models based on regression methods such as PLS. The authors of [29] demonstrated that monitoring methods based on CVA are more suitable for systems working under changing operating conditions compared to models based on PCA and PLS. The literature provides examples of extensive application of CVA for industrial process modelling and health monitoring. Pilgram, Judd and Mee [121] developed a prediction method based on CVA and a radial basis method for modelling of random processes. The authors of [146] proposed a state-space method using canonical variable states for modelling linear and nonlinear time series. Negiz and Cinar [14] used a CVA-based subspace-identification approach to describe a high-temperature short-time milk-pasteurization process. CVA was utilized in [13] to predict performance deterioration and estimate the behaviour of a system under faulty operating conditions. The authors illustrated the performance of the proposed method in a large-scale 3-phase flow facility. Conventional multivariate subspace-identification approaches based on PCA or PLS are based on the assumption that the process variables are linearly correlated and are independent and identically distributed (IID) [125]. The requirement that process variables be IID and linear tends to limit the scope of many subspace-identification methods to linear processes operating under steady state conditions. Occasionally, problems associated with the effectiveness of the modelling tools can arise when the underlying assumptions are violated; for instance, the presence of nonlinear distortions, time-dependency, system dynamics and varying operating conditions. Therefore, it is necessary to develop adaptive subspace-identification approaches for systems in which variations in the mode of operation and changes in the system dynamics are common. A number of recursive monitoring methods have been proposed to address these limitations. An extension to the modelling approaches based on the conventional PCA method was proposed by Lane et al. in [147]. The authors illustrated the performance of the proposed recursive PCA model in a polymer film-manufacturing process. Choi et al. [125] developed an adaptive multivariate statistical process monitoring (MSPC) for the monitoring of dynamic processes where variations in operating conditions are incurred. The authors of [32] proposed a recursive state-space model based on CVA. In that study, the norm of the difference between consecutive measurements was used to adjust forgetting factors, and the calculation of the optimal values of the minimum and maximum forgetting factors was not detailed. 
In this study, we develop an adaptive monitoring tool based on CVA for the modelling of time-varying and nonlinear processes. We explore the ability of adaptive CVA to predict the behaviour of industrial rotating machines under varying operating conditions and slowly evolving faulty conditions. To obtain an accurate estimate of system outputs, forgetting factors calculated based on the residual between the model outputs and actual measurements are adopted to update the covariance and cross-covariance matrices of the system. The proposed method is validated on industrial data captured from an operational gas turbine and a centrifugal compressor. 
[bookmark: _Toc506214382] Methodology
[bookmark: _Hlk512524226]Given system input time-series  and output time-series , a linear state-space model is built as follows [31]:
[bookmark: OLE_LINK103][bookmark: _Ref497847982]                                                                                       Equation 5‑1
[bookmark: OLE_LINK104][bookmark: OLE_LINK105][bookmark: _Ref497847991]                                                                                                     Equation 5‑2
where ,  and  are system inputs, system outputs and state vectors;  and  are model coefficient matrices; and  is zero-mean and normally distributed independent white noise. 
The objective of CVA is to maximize the correlation of two sets of variables [4]. To generate two data matrices from the measurements, the measurement vector is expanded at each sampling time by including , the number of previous samples, and , the number of future samples, to construct the past and future sample vectors  and ( and  are the number of output variables and input variables).
                                                                                    Equation 5‑3
                                                                                               Equation 5‑4
The observations can be expanded at each sampling time  by including  observations to form the extended past vectors :
                                                                     Equation 5‑5
[bookmark: OLE_LINK68][bookmark: OLE_LINK67]To avoid the domination of variables with large absolute values, the past and future sample vectors are normalized to the zero-mean vectors  and . Then, the vectors  and  at different sampling times are rearranged to produce the reshaped matrices  and :
                                                 Equation 5‑6
                                                              Equation 5‑7
where , and  represents the total number of samples for measurements . Cholesky decomposition is then applied to the past and future matrices  and  to configure a Hankel matrix . To find the linear combination that maximizes the correlation of the two sets of variables, the truncated Hankel matrix  is decomposed using singular value decomposition (SVD):
                                                                         Equation 5‑8
where  and are the sample covariance matrices and  denotes the cross-covariance matrix of  and . ,  and  are calculated as follows [15]:
                                                                                           Equation 5‑9
                                                                                               Equation 5‑10
                                                                                               Equation 5‑11
,  and  have the following form:



The columns of  and the columns of  are called the left-singular and right-singular vectors of .  is a diagonal matrix, and its diagonal elements are called singular values and depict the degree of correlation between the corresponding left-singular and right-singular vectors. The right-singular vectors in  corresponding to the largest  singular values are retained in the truncated matrix . This matrix is used later to perform dimension reduction on the measured data. 
With the truncated matrix , the  dimensional past vector  is further converted into a reduced -dimensional matrix  (the columns of  are , which are called canonical state variates) by the following:
                                        Equation 5‑12
where  is the projection matrix that maps the past observations into the canonical variate space. In this investigation, the number of  is determined in the same way as the traditional CVA model. According to the literature [15], if the number of retained states  is no less than the actual order of the system, we can substitute the state variates  with the canonical state variates . Therefore, the state variables are defined as a linear combination of the past measurement vector  [32]:
                                                                                               Equation 5‑13
                                                                                                          Equation 5‑14
where  with all zero entries. According to the literature [30], after the estimations of the state variates are calculated, the matrices  and  are calculated from the measurements through linear least-squares regression as follows:
                                                                  Equation 5‑15
                                                                    Equation 5‑16
where . 
Due to non-stationary process behaviour, many industrial processes have time-varying characteristics that may cause rapid changes in state variates over time. The sample covariance matrices  and and the cross-covariance matrix  change according to the change in operating conditions. Constant covariance and cross-covariance matrices may not be able be fully capture the system dynamics. Therefore, the exponential weighted moving-average method is employed in this investigation to update the matrices ,  and :
                                                            Equation 5‑17
                                                                 Equation 5‑18
                                                                 Equation 5‑19
where  is the forgetting factor, which is calculated according to the Euclidean norm of the residual between the predicted model outputs and actual measurements. The initial values of ,  and  are determined by the traditional CVA model. 
Tracking time-varying parameters is an important problem in subspace modelling. A constant forgetting factor is not suitable for tracking time-varying parameters and therefore cannot fully reflect the dynamics of a process when rapid changes are incurred [148]. Therefore, the forgetting factor must be changed according to the rate of process change to yield satisfactory predictive results in time-varying environments. In this investigation, the forgetting factor is adjusted based on the Euclidean norm of the residual between the predicted model outputs and the actual measurements as adopted in [30]. When the forgetting factor is small, it gives more weight to present observations to reduce the impact of past observations on the current model. As the value of the forgetting factor approaches unity, it gives more weight to past measurements, thereby permitting long-term memory of the model. The forgetting factor used in this study is calculated as follows:
                                                                                               Equation 5‑20
where  is a constant. The empirical parameter selection procedure proposed by [30], [125] is adopted in this study to determine the value of . Typically, a value between 0.999 and 0.9 is selected.  denotes the Euclidean norm of the residual of the actual measurements and model outputs. The tuning parameter controls the sensitivity of the model to prediction errors. The larger  is, the less sensitive the model is to prediction error. The value of the forgetting factor  is adjusted at every time instance when new measurements are available.
After the forgetting factor is determined, weighted recursive least squares (WRLS) with adaptive forgetting factor [148], [149] can be used to update model coefficient matrices  and . The system described by Equation 5‑1 and Equation 5‑2 is rewritten as follows:
[bookmark: OLE_LINK95][bookmark: OLE_LINK100]                                                                                                    Equation 5‑21
[bookmark: OLE_LINK101]                                                                                                                Equation 5‑22
[bookmark: OLE_LINK102][bookmark: OLE_LINK107]where , , , .  can be calculated by using the recursive least squares (RLS) [150]:
[bookmark: OLE_LINK112][bookmark: OLE_LINK113]                                                                     Equation 5‑23
[bookmark: OLE_LINK114]                                                                                Equation 5‑24
The innovation noise sequence is defined as:
[bookmark: OLE_LINK115][bookmark: OLE_LINK118]                                                                                                     Equation 5‑25
Similarly,  is calculated as follows:
[bookmark: OLE_LINK119]                                                                Equation 5‑26
[bookmark: OLE_LINK121][bookmark: OLE_LINK123]                                                                              Equation 5‑27
[bookmark: OLE_LINK80]The procedures for subspace identification and performance estimation using the model described above are summarized as follows:
Step 1: Calculate model coefficient matrices using the traditional CVA model.
Step 2: Calculate the forgetting factor  as per Equation 5‑20. 
Step 3: Compute the updated covariance and cross-covariance matrices ,  and  according to Equations 5‑17 - 5‑19.
Step 4: Update the Hankel matrix  as per Equation 5‑8.
Step 5: Estimate the state vectors  and  as per Equations 5‑13 - 5‑14.
Step 6: Update the model coefficient matrices via Equations 5‑23 - 5‑27.
Step 7: Estimate the model outputs  according to Equations 5‑1 - 5‑2.
Step 8: Update the forgetting factor  based on the residual between the estimated outputs and actual measurements. 
Step 9: Repeat step 1 – step 8 iteratively. 
[bookmark: _Toc506214383] Case Study 1: Adaptive CVA for Performance Estimation under Healthy Operating Conditions
[bookmark: _Toc506214384]Data Acquisition
[bookmark: OLE_LINK93]The condition-monitoring data used in Section 4.4 (i.e., the data captured from gas turbine C) were used to test the capabilities of the proposed adaptive CVA method for system identification and performance estimation. In this study, all data were obtained at the sampling rate of one observation per twenty minutes. Two input variables (Inlet Guide Vane (IGV) control reference and gas fuel stroke reference (FSR)) and 85 output variables (see Table 4‑1) were used to construct a state-space model as described in Equations 5‑1 - 5‑2. The IGV is used to control air flow into the gas turbine while attempting to maintain the air-fuel mixture within a stable combustion range. The FSR is used for General Electric manufactured gas turbine control systems to position the fuel control valve. The future values of both input variables can be estimated by referring to the production plan. Figure 4‑1 shows the trends in different performance variables of the gas turbine under study. The engine was operating under healthy conditions over the entire monitored time series. 
[bookmark: _Toc506214385] Determination of CVA-based State Space Model Parameters and Results
Following the procedures described in Section 4.4.2, a training data set containing 260 observations and a validation data set containing 234 observations were first captured from the gas turbine. The training data were used to construct a state-space model according to Equations 5‑1 - 5‑2 and to calculate the cross-covariance and covariance matrices , and  at time . The optimal number of time lags  and  were determined using sampling autocorrelation analysis and were set to 16. The number of retained states  was set to 1 according to the analysis detailed in Section 4.4.2. After the CVA model was established, the validation data set was used to update the constructed model iteratively. The value of  was set to 0.95 according to the empirical parameter-selection procedure proposed by [30], [125]. The value of forgetting factor  can be updated at each time instance based on the norm of the residual between the system outputs and actual measurements. As a result, the value of  becomes larger when the residual of the system outputs is smaller and vice versa. The tuning parameter  was set to 15, which is the minimum value that can ensure the convergence of the model while maximizing the sensitivity of the model to prediction errors. Figure 5-1 shows the changes in forgetting factor  based on the residual between the estimated outputs and actual measurements. When the system’s operating condition changes rapidly, the model is unable to track the actual outputs accurately, and the residual increases. When the residual of the system outputs becomes larger,  is smaller to give more weight to present observations. Therefore, the model effectively tracks changes in operating conditions. 
Figure 5-2 and Figure 5-3 show the selected predicted outputs of adaptive CVA and CVA. In the figures, the predicted results generated by adaptive CVA highly coincide with the actual measurements. The results indicate that adaptive CVA can track system dynamics more accurately than the CVA model, especially under rapidly changing operating conditions. Table 5-1 shows the precision analysis for the prediction error of the proposed adaptive CVA model and the traditional CVA method. Two performance metrics, 1) mean absolute error (MAE) and 2) mean absolute percentage error (MAPE), were used in this study to evaluate the performance of the predictive model. Interested readers are referred to [151] for further information about the two metrics. Overall, the prediction errors of adaptive CVA are much smaller than those of CVA, proving that the proposed method can be used to provide site engineers with more reliable performance estimation compared to time-invariant models.  

[image: ]
[bookmark: _Toc506214735]Figure 5‑1 Trend of the variable forgetting factor and model prediction error for the entire prediction timeframe
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[bookmark: _Toc506214736]Figure 5‑2 Generator output power predicted by adaptive CVA and CVA
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[bookmark: _Toc506214737]Figure 5‑3 Metal temperature of bearing #1 predicted by adaptive CVA and CVA

[bookmark: _Toc498713029]

Table 5‑1 Prediction errors for different performance variables
	Variable ID
	1
	2
	4
	5
	6
	7
	8
	9
	10
	11

	MAPE ACVA
	0.0056
	0.7289
	0.0066
	0.0045
	0.0051
	0.0047
	0.002
	0.0054
	0.0046
	0.0032

	MAPE CVA
	0.0763
	1.2252
	0.0095
	0.01
	0.0121
	0.0126
	0.01
	0.0082
	0.0086
	0.0092

	MAE ACVA
	1.0265
	20.5452
	3.0401
	0.062
	0.0691
	1.7688
	2.5066
	3.2015
	2.8043
	1.9351

	MAE CVA
	5.3538
	28.6683
	4.0288
	0.1211
	0.1374
	4.5217
	10.5896
	4.8053
	4.947
	5.0602

	Variable ID
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21

	MAPE ACVA
	0.0039
	0.0053
	0.004
	0.0044
	0.0034
	0.0046
	0.0046
	0.0044
	0.0047
	0.0043

	MAPE CVA
	0.0088
	0.0104
	0.0124
	0.0114
	0.0107
	0.0128
	0.0095
	0.0069
	0.0178
	0.0093

	MAE ACVA
	2.3488
	3.2007
	2.394
	2.6393
	2.0416
	2.6968
	2.7257
	2.657
	2.7995
	2.6148

	MAE CVA
	4.965
	5.7295
	6.7204
	6.3533
	5.8534
	6.9353
	5.6086
	4.1859
	9.6622
	5.182

	Variable ID
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

	MAPE ACVA
	0.0048
	0.0043
	0.0048
	0.0037
	0.0041
	0.0045
	0.0036
	0.004
	0.0039
	0.0048

	MAPE CVA
	0.0124
	0.0127
	0.0116
	0.0138
	0.0096
	0.0105
	0.0094
	0.0096
	0.0097
	0.0092

	MAE ACVA
	2.8669
	2.5785
	2.9242
	2.2347
	2.4898
	2.691
	2.1687
	2.396
	2.3364
	2.8301

	MAE CVA
	6.808
	6.8843
	6.3552
	7.3393
	5.3665
	5.756
	5.1196
	5.2931
	5.312
	5.2719

	Variable ID
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41

	MAPE ACVA
	0.0033
	0.0041
	0.0049
	0.0037
	0.0038
	0.0041
	0.0041
	0.0048
	0.007
	0.0065

	MAPE CVA
	0.0098
	0.0092
	0.0108
	0.0098
	0.0082
	0.0075
	0.0108
	0.0087
	0.0138
	0.0125

	MAE ACVA
	1.9916
	2.4264
	2.9128
	2.1863
	2.0132
	2.5116
	2.4992
	2.915
	2.8802
	2.7687

	MAE CVA
	5.2782
	5.1068
	6.0697
	5.355
	4.1465
	4.3714
	5.9821
	4.9903
	5.4832
	5.1769

	Variable ID
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51

	MAPE ACVA
	0.0059
	0.0054
	0.0047
	0.0057
	0.0866
	0.0012
	0.0229
	0.0072
	0.0088
	0.0088

	MAPE CVA
	0.015
	0.0141
	0.0131
	0.0119
	0.3195
	0
	0.0386
	0.0164
	0.0164
	0.0171

	MAE ACVA
	2.8227
	2.5319
	1.8015
	2.5046
	2.7201
	0.0916
	3.0623
	2.9132
	3.6774
	3.7023

	MAE CVA
	6.7382
	6.1526
	4.8555
	5.0438
	21.0952
	0
	5.1394
	6.2386
	6.559
	6.8245

	Variable ID
	52
	53
	54
	56
	57
	58
	59
	60
	61
	62

	MAPE ACVA
	0.0119
	0.0106
	0.0031
	0.0033
	0.0024
	0.0017
	0.3365
	0.0416
	0.1857
	0.0028

	MAPE CVA
	0.0231
	0.0205
	0.0105
	0.0042
	0.0014
	0.0009
	0.2098
	8.8683
	1.8036
	0.0305

	MAE ACVA
	3.3747
	2.9176
	0.036
	0.089
	0.2491
	0.0441
	0.0763
	0.4131
	0.1115
	2.2029

	MAE CVA
	6.2127
	5.4443
	0.081
	0.1157
	0.143
	0.0236
	1.2499
	2.7471
	0.5578
	12.9931

	Variable ID
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72

	MAPE ACVA
	0.0062
	0.0026
	0.0126
	0.0122
	0.002
	0.0302
	0.0287
	0.0106
	0.0104
	0.0018

	MAPE CVA
	0.0481
	0.0041
	0.0583
	0.0584
	0.0029
	0.0797
	0.0797
	0.0194
	0.0224
	0.003

	MAE ACVA
	12.0893
	0.1233
	0.6217
	0.6018
	0.138
	0.1381
	0.1225
	2.0693
	2.0958
	0.1389

	MAE CVA
	30.9418
	0.1934
	2.8366
	2.834
	0.2041
	0.3773
	0.3461
	3.7536
	4.41
	0.2299

	Variable ID
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82

	MAPE ACVA
	0.0233
	0.0648
	0.0058
	0.006
	0.002
	0.0123
	0.0365
	0.0018
	0.0019
	0.0018

	MAPE CVA
	0.0531
	0.1067
	0.0123
	0.0135
	0.0033
	0.0259
	0.0793
	0.0018
	0.0018
	0.0033

	MAE ACVA
	0.0769
	0.2843
	0.4829
	0.517
	0.1318
	0.0657
	0.0804
	0.1574
	0.1573
	0.1216

	MAE CVA
	0.1832
	0.4904
	1.0165
	1.1554
	0.2195
	0.1376
	0.1728
	0.1566
	0.152
	0.2212

	Variable ID
	83
	84
	85
	86
	87
	
	
	
	
	

	MAPE ACVA
	0.02
	0.0027
	0.0023
	0.0124
	0.0029
	
	
	
	
	

	MAPE CVA
	0.0643
	0.0035
	0.0045
	0.0595
	0.0029
	
	
	
	
	

	MAE ACVA
	0.0721
	0.1868
	0.1592
	0.6078
	0.1984
	
	
	
	
	

	MAE CVA
	0.2252
	0.2488
	0.3103
	2.8656
	0.1987
	
	
	
	
	


[bookmark: _Toc506214386]Case Study 2: Adaptive CVA for Performance Estimation under Faulty Conditions
[bookmark: _Toc506214387]Data Acquisition
The analysis performed in Section 5.4 described how adaptive CVA can be used to perform system identification and performance estimation under time-varying operating conditions. In addition to changing operating conditions, rotating machines that operate at high speed and under high pressure are subject to performance degradation and failures. If a fault occurs and the fault evolution is slow, the machine operator may choose to keep the machine running until repair facilities and spare parts are available at the plant. In such a case, the proposed adaptive CVA model can be used to estimate how the system will behave under faulty operating conditions given future system inputs. The proposed method is applied to an operational industrial centrifugal compressor to predict the performance of the machine after a variable speed drive (VSD) fault occurs. This compressor is a one-cylinder, two-section, six-stage centrifugal compressor running at a large refinery in Europe (hereafter referred to as Compressor A). This compressor is driven by a variable-speed electric motor. For this study, all data were captured at a sampling rate of one sample per hour by the machine’s condition-monitoring system. Table 1 summarizes all the measured variables for this compressor. Suction throttling valve set points were used as the system input in this study. The remaining 13 variables, except for the suction temperature, were used as system outputs. Suction temperature was not used as a system output because its value is largely determined by environmental conditions and should be used as an input variable. The use of suction temperature as a system input variable for performance estimation will be detailed in Chapter 6. 
As shown in Figure 5-4, the compressor is in the healthy condition during the first 170 points of the time series. The SVD fault occurred at the 171st sampling point. Since the fault severity was not very critical, the machine was kept running until the end of the tine series. After that time, site engineers removed the malfunctioning VSD and replaced it with a newly arrived VSD. To compare the performance of the traditional CVA method with that of the adaptive CVA approach, data set T2 as shown in Figure 5-4 was first utilized to build a traditional CVA model. Then, the trained model was fed the actual suction throttling valve set points used throughout the degradation process to provide estimations of the system outputs for data set T3. An adaptive CVA model was utilized to provide the performance estimation of the compressor under faulty operating conditions. The predicted outputs obtained from the adaptive CVA model were compared with those obtained from the traditional CVA model to evaluate the performance of the proposed adaptive monitoring method.
 [image: ]
[bookmark: _Toc506214738]Figure 5‑4 Trend in five different performance variables (normalized) before and after the VSD failure.

[bookmark: _Toc498713030]Table 5‑2 Measured variables for compressor A
	ID
	Variable Name
	ID
	Variable Name
	ID
	Variable Name

	1
	Shaft Speed
	6
	Discharge Temperature
	11
	Journal Bearing 2 Vibration

	2
	Flow Meter
	7
	Suction Pressure
	12
	Journal Bearing 3 Vibration

	3
	Suction Throttling Valve
	8
	Discharge Pressure
	13
	Journal Bearing 4 Vibration

	4
	Actual Power
	9
	Total Driver Power
	14
	Thrust Bearing Vibration

	5
	Suction Temperature
	10
	Journal Bearing 1 Vibration
	
	



[bookmark: _Toc506214388]Determination of CVA-based State Space Model Parameters
The numbers of time lags  and  were determined by calculating the autocorrelation function of the root summed squares of all variables of the data set captured under healthy operating conditions against a confidence bound of ± 5%. The autocorrelation function indicates how long the signal is correlated with itself and thus can be used to determine the maximum number of significant lags. As shown in Figure 5-5, the sample autocorrelation analysis of the training data demonstrated that the maximum number of significant lags was 6. Therefore, the number of time lags  and  were set to 6 in this study. 
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[bookmark: _Toc506214739]Figure 5‑5 Autocorrelation analysis of compressor A. Blue lines: upper and lower confidence bounds.
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[bookmark: _Toc506214740]Figure 5‑6 Summed prediction error (MAE and MAPE) for all output variables for different values of q

Data set T2, which was captured during the early degradation stages, was used to build and train the CVA subspace model. To determine the optimal number of trained retained states  for system identification, the trained CVA model was first used to predict system outputs for T2. The purpose of this validation process is to find the optimal value of  that minimizes the predictive error. Two performance metrics, 1) mean absolute error (MAE) and 2) mean absolute percentage error (MAPE), were used in this study to evaluate the performance of the predictive model. The summed MAE and MAPE of all output variables are plotted against different numbers of retained states  in Figure 5-6. Overall, the errors increase as the system order becomes larger, and  was finally set to 1 to obtain the optimal model that gives the highest predictive accuracy. 
[bookmark: _Toc506214389] Results and Discussion
Data set T2 was first utilized to construct a CVA model. After the CVA model was established, it was fed with the suction throttling valve set points used throughout the entire degradation process to predict the system outputs for data set T3 (see Figure 5-4). To test the performance of the proposed adaptive CVA model, we used the validation data set T3 to update the constructed model iteratively according to steps 2-8 described in Section 5.3. The value of  was set to 0.92 according to the empirical parameter-selection procedure proposed by [30], [125]. The value of the forgetting factor  can be updated at each time instance based on the difference between the predicted system outputs and the actual measurements. Figure 5-7 shows the changes in  related to the residual of the model outputs. The value of  decreases to achieve faster identification with short memory when the residual of the system outputs is larger. When the residual is small, using more information about the past improves the prediction accuracy of the model. The tuning parameter  was set to 95, which is the minimum value that can ensure the convergence of the model while maximizing the sensitivity of the model to prediction errors. Overall, the model tracks the changes in operating conditions effectively. 
[bookmark: OLE_LINK108][bookmark: OLE_LINK109][bookmark: OLE_LINK110][bookmark: OLE_LINK111]Figure 5-8 to Figure 5-11 show the forecasted outputs of adaptive CVA and CVA. In the figures, the red curve is the actual measurements, the blue curve is the predicted outputs of the adaptive CVA model, and the yellow curve is the forecasted outputs of a traditional CVA model. The predicted outputs generated by adaptive CVA highly coincide with the actual measurements. Notably, the adaptive CVA model can track changes in vibration measurements more accurately than the traditional CVA method while ensuring more precise estimations for performance variables such as the compressor actual power and discharge temperature. These results imply that the proposed method takes advantage of recursive state-space modelling to reveal the correlation between performance and vibration signals, thereby increasing the sensitivity of the adaptive CVA to mechanical failure compared to traditional CVA models. Table 5-3 shows the precision analysis for the prediction error of the proposed adaptive CVA model and the traditional CVA method. Two performance metrics, 1) mean absolute error (MAE) and 2) mean absolute percentage error (MAPE), were used in this study to evaluate the performance of the predictive model. Overall, the prediction errors of the adaptive CVA are much smaller than those of CVA, proving that the proposed method can be used to provide site engineers with more reliable and robust performance estimation than time-invariant models.  
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[bookmark: _Toc506214741]Figure 5‑7 Trend in the variable forgetting factor and model prediction error for the entire prediction timeframe
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[bookmark: _Toc506214742]Figure 5‑8 Compressor power under faulty operating conditions predicted by adaptive CVA and the CVA model
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[bookmark: _Toc506214743][bookmark: OLE_LINK23]Figure 5‑9 Discharge temperature under faulty operating conditions predicted by adaptive CVA and the CVA model
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[bookmark: _Toc506214744]Figure 5‑10 Vibration level of journal bearing 1 under faulty operating conditions predicted by adaptive CVA and the CVA model
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[bookmark: _Toc506214745]Figure 5‑11 Vibration level of journal bearing 3 under faulty operating conditions predicted by adaptive CVA and the CVA model





[bookmark: _Toc498713031]Table 5‑3 Prediction errors for different performance variables
	[bookmark: OLE_LINK106]Variable ID
	1
	2
	4
	6
	7
	8

	MAPE (ACVA)
	0.002611
	0.01263
	0.01311
	0.003401
	0.01302
	0.01204

	MAPE (CVA)
	0.002032
	0.01266
	0.01973
	0.005195
	0.02415
	0.01124

	MAE (ACVA)
	33.3009
	0.007454
	19.8389
	0.4826
	0.08185
	0.2204

	MAE (CVA)
	25.9257
	0.007480
	30.5848
	0.7381
	0.1559
	0.2117

	Variable ID
	9
	10
	11
	12
	13
	14

	MAPE (ACVA)
	0.01281
	19.4714
	2.3379
	0.2356
	0.2165
	0.2846

	MAPE (CVA)
	0.01965
	34.0943
	4.6263
	0.32037
	0.2895
	0.4049

	MAE (ACVA)
	19.3746
	3.4878
	3.4761
	3.2336
	3.5372
	3.3731

	MAE (CVA)
	30.4582
	4.3312
	4.3878
	4.3241
	4.5232
	4.1863



[bookmark: _Toc506214390]Conclusion for ACVA-based performance estimation
This study proposes an adaptive CVA modelling tool to improve the predictive accuracy of traditional CVA methods. A variable forgetting factor was adopted to update the model coefficient matrices and covariance and cross-covariance matrices according to the residuals of the model outputs. The proposed model tracks rapid changes in system outputs due to the use of the adaptive forgetting factor. Condition-monitoring data captured from an operational industrial gas turbine and a centrifugal compressor were used to test the validity of the proposed method. 
The results demonstrated that adaptive CVA can predict system performance and mechanical variables accurately under time-varying healthy conditions as well as slowly evolving faulty operating conditions. The proposed method takes advantage of recursive state-space modelling to enhance the CVA prognostic performance and increase its sensitivity to mechanical failures. This method can be used to provide site engineers with more reliable and robust performance estimates of systems operating under varying and abnormal conditions. The information provided by the proposed method can be used to forecast the impact of a fault on the operational process and to develop appropriate production plans and optimal maintenance strategies, thereby making plant operations more safe, productive and profitable.


[bookmark: _Toc506214391]Canonical Variable Analysis and Long Short-term Memory for Fault Diagnosis and Performance Estimation of a Centrifugal Compressor
[bookmark: _Toc506214392]Abstract
Centrifugal compressors are widely used for gas lift, re-injection and transport in the oil and gas industry. Critical compressors that compress flammable gases and operate at high speeds are prioritized on maintenance lists to minimize safety risks and operational downtime hazards. Identifying incipient faults and predicting fault evolution for centrifugal compressors could improve plant safety and efficiency and reduce maintenance and operation costs. This study proposes a dynamic process monitoring method based on canonical variable analysis (CVA) and long short-term memory (LSTM). CVA was used to perform fault detection and identification based on the abnormalities in the canonical state and the residual space. In addition, CVA combined with LSTM was used to estimate the behavior of a system after the occurrence of a fault using data captured from the early stages of deterioration. The approach was evaluated using process data obtained from an operational industrial centrifugal compressor. The results show that the proposed method can be effectively used to detect process abnormalities and perform multi-step-ahead prediction of the system’s behavior after the appearance of a fault. 
[bookmark: _Toc506214393]Introduction
Modern industrial natural gas processing plants are becoming increasingly complex due to the use of diverse equipment. Because of their complexity, developing an accurate first-principle failure model for such large-scale industrial facilities can be challenging [142]. Thus, existing condition monitoring approaches for industrial processes are typically derived from routinely collected system operating data. Due to the rapid growth and advancement in data acquisition technology, long-term continuous measurements can be taken with sensors mounted on the machinery systems. The monitored data are easily stored and analyzed to extract important process condition information.
A number of multivariate statistical techniques have been developed based on condition monitoring data for diagnostic and prognostic health monitoring, such as filtering-based models [127], multivariate time-series models [128] and neural networks [129]. Key challenges in the implementation of these techniques include strongly correlated variables, high-dimensional data, changing operating conditions and inherent system uncertainty [20]. Recent developments in dimensionality reduction techniques have shown improvements in identifying faults from highly correlated process variables. Conventional dimensionality reduction methods include principal component analysis (PCA) [130] and partial least-squares analysis (PLS) [132]. These basic multivariate methods perform well under the assumption that process variables are time independent. However, this assumption might not hold true for real industrial processes because sensory signals affected by noise and disturbances often show strong correlations between the past and future sampling points [20]. Therefore, variants of the standard multivariate approaches [133]–[135] were developed to solve the time-independency problem, making them more suitable for dynamic process monitoring. In addition to approaches derived from PCA and PLS, canonical variable analysis (CVA) is a multivariate analysis tool. CVA is a subspace method that takes serial correlations between different variables into account and hence is particularly suitable for dynamic process modelling [123]. The effectiveness of CVA has been verified by extensive simulation study [123], [136] and data captured from experimental test rigs [28]. However, the effectiveness of CVA in real complex industrial processes has not been fully studied. In the present study, condition monitoring data acquired from an operational industrial centrifugal compressor were used to prove the superior performance of CVA for fault detection and identification in industrial processes. 
[bookmark: OLE_LINK139][bookmark: OLE_LINK140]Once a fault is detected in industrial processes, a prognostic tool is required to predict how the system will behave under faulty operating conditions. CVA is a subspace identification method that can be used to build a dynamic model using measurements of a system’s input and output signals. The obtained model can be utilized to predict system performance given expected future input conditions. System inputs used in subspace identification are typically manipulated or controllable variables such as inlet liquid and gas flow valve position. However, the performance of complex industrial systems such as turbomachines is not only associated with the system’s input signals that can be manipulated but is also affected by variations in environmental conditions such as ambient temperature [152]. The inlet gas temperature of the compressor under study is a prime example of how environmental conditions can affect a system’s performance. Specifically, for the centrifugal compressor studied in this investigation, the temperature of the gas to be compressed is largely determined by ambient temperature when the gas passes through long transmission pipelines to the compressor. As a result, the magnitude of the compressor’s inlet gas temperature changes periodically, most commonly every 24 hours. To account for the impact of ambient temperature on a system’s performance, and thereby allows both the environmental factors and the human interventions to be factored in when predicting the system’s future behavior, a time series prediction method is required to forecast the magnitude of inlet gas temperature based on historical data. 
Many data-driven methodologies are available for the prediction of time series, including the widely applied support vector machine (SVM) [153], echo state network (ESN) [154] and non-linear auto-regressive moving average [155] methods. One main challenge of sequence prediction tasks that involve temporal dependencies is handling long-range dependencies [156]. Long short-term memory (LSTM) is a powerful learning model that has shown extraordinary capability in a wide range of machine learning tasks such as machine remaining useful life prediction [157], visual object recognition [158] and speech recognition [159]. LSTM networks use special units in hidden layers, allowing inputs to be remembered for long periods, and therefore has great potential in constructing end-to-end systems [160]. However, few studies have been conducted to predict sensory signals collected from industrial processes. In this investigation, we explore the ability of LSTM to model compressor inlet temperature time series. The predicted future inlet gas temperature along with the manipulated system’s input signals were fed into a CVA model to perform machine behavior estimation.
The major contributions of this paper are as follows:
1. The use of CVA for fault detection using data captured from an operational industrial centrifugal compressor;
1. The combination of the canonical state space and the residual space information for fault root-cause analysis;
1. The application of LSTM to predict the inlet gas temperature of the compressor under study;
1. The combination of CVA and LSTM for multi-step-ahead prediction of the system’s behavior after the occurrence of a fault.
[bookmark: _Toc506214394]Methodology
[bookmark: _Toc506214395]CVA for Fault Detection and Identification
Please refer to Section 3.3 for a detailed discussion on CVA for fault detection and identification. 
[bookmark: _Toc506214396]CVA-based State Space Model for Performance Estimation
CVA can be used to build a state-space model that represents the dynamics of the system using condition monitoring data. Given system input time series  and output time series , the linear state-space model can be built as follows [6]:
                                                                                         Equation 6‑1
                                                                                    Equation 6‑2
where  is the state vector with order ;  and  are model coefficient matrices; and  and  are independent white noise. According to the literature [15], if the number of retained states  is no less than the actual order of the system, we can substitute the matrix  with the canonical state variates  obtained from Equation 6-1. Moreover, the authors suggested the use of multivariate regression for the calculation of the unknown coefficient matrices  and :
                                                 Equation 6‑3
[bookmark: OLE_LINK47]The procedures of performance estimation using the model described above for the centrifugal compressor under study are summarized as follows:
1. Determine the system inputs  ( consists of two variables: a manipulated variable (suction throttling valve position) and an unmanipulated variable (suction temperature)) and outputs  (measured performance variables). 
1. Obtain a training data set from the compressor during the early stages of deterioration. Construct a state space model based on the obtained training data. Model coefficient matrices can be calculated according to Equations 6-1 to 6-3. The constructed CVA-based state space model can be used to predict system outputs in the future  for the future expected input conditions .
1. To test the capabilities of the CVA model to estimate performance deterioration of the compressor under faulty conditions, capture from the compressor a validation data set that covers the entire degradation process. Then, feed the CVA model with the same suction throttling valve set points used during the total duration of the validation data set. Meanwhile, use a trained LSTM to predict the suction temperature for the total duration of the validation data set feed and the predicted suction temperature values into the CVA model together with suction throttling valve set points. Predict the values of system outputs as per Equations 6-1 and 6-2. Compare the predicted outputs with the actual measured outputs in the validation data set to evaluate the predictive accuracy of the CVA model. 

[bookmark: _Hlk496959105]Section 6.3.3 details how an LSTM model can be built and trained to estimate a compressor’s future suction temperature. When a fault occurs, site engineers can predict suction throttling valve set points by looking at the production plan and predict suction temperature values using a trained LSTM model. Then, a trained CVA model can be used to predict how the system will behave under faulty conditions for the expected (predicted) future input conditions. 
[bookmark: _Toc506214397]LSTM for Time Series Prediction
Section 6.3.2 describes how a CVA model can be used to estimate the behavior of a system under faulty operating conditions given expected future input conditions. This section describes how uncontrollable system input variables (i.e., temperature of the gas to be compressed) can be predicted by LSTM based on historical data.
Long Short-term Memory
[bookmark: OLE_LINK45]LSTM is a special type of recurrent neural network that eases the “vanishing gradient” problem [161]. The schematic diagram of an LSTM cell is shown in Figure 6-1. The core idea behind LSTMs is a memory cell  that can maintain its state information over time, allowing gradients to flow over long sequences. The information flow into and out of the memory cell  is regulated by three gates: an input gate , a forget gate  and an output gate . At every time instant, the LSTM cell reads the input of the current time  and the hidden state  from the previous step. The combination of input  and hidden state  is processed by passing through a squashing tanh function:
                                                                        Equation 6‑4
[bookmark: _Hlk505589333]where ,  and  are input weights, recurrent weights and bias, respectively.  is a vector of new candidates that could be added to the state . The forget gate  will determine which information should be removed from the memory cell  through an element-wise sigmoid function:
                                                                                Equation 6‑5
Then, the input gate will determine which information will be stored in the memory cell  through an element-wise sigmoid function:
                                                                                 Equation 6‑6
Next, the information in the memory cell is updated through partial forgetting of the information stored in the previous memory cell  via the following:
                                                                                          Equation 6‑7
where  denotes the element-wise product function of two vectors. At this step, the learnable forget gate  determines the extent to which past information stored in  will be forgotten. The value of  is set between 0 and 1. If , the old state will be completely forgotten, and if , the past information will be maintained in the memory cell. Lastly, the output hidden state  is updated based on the computed cell state  as follows:
                                                                                                Equation 6‑8 
where  is the output gate. Network input weights , recurrent weights  and bias  are calculated through the training process, and the trained network will be used to predict time series data in Section 6.4.

[image: ]
[bookmark: _Toc506214746]Figure 6‑1 Schematic diagram of an LSTM cell.

Data Pre-processing
[bookmark: _Hlk496959562][bookmark: _Hlk496959694][bookmark: OLE_LINK87]It is common practice to perform data pre-processing when using machine learning algorithms for time series forecasts [162]. Seasonality decomposition analysis [163] was first performed on the original suction temperature signals, and the results revealed that the seasonality is multiplicative because the magnitude of the seasonal variation changes depending on the mean level of the time series [164]. Therefore, the pre-processing in this study starts with applying log-transformation to the suction temperature time series. Then, seasonal decomposition is conducted to decompose the log-transformed data into seasonal, trend and random components. In this way, the seasonal decomposition’s normally additive split is changed into a multiplicative split, thereby transferring the suction temperature’s seasonality into the multiplicative seasonality. After removal of the seasonality, two moving windows (an input window and an output window) are applied to the sum of the smooth trend and the noisy component to prepare training samples for LSTM. Figure 6-2 illustrates how the moving windows are used to prepare training samples based on the decomposed time series. The last value of the trend data at the end of the input window (shown in black dot in the figure) is subtracted from all samples covered by the input and output windows. The purpose of this step is to normalize the data to avoid the domination of extremely large values. Then, the input and output window slides by a single increment each time until the rightmost point of the output window reaches the end of the training data set. With this process, constant size inputs and outputs are extracted and then fed into an LSTM model to train the model parameters. 
[image: ]
[bookmark: _Toc506214747]Figure 6‑2 Illustration of preparing LSTM inputs.

Network Architecture
The LSTM network used in this study consists of a sequence of 6 layers: an input layer, 3 LSTM hidden layers, a dense hidden layer with linear activation and an output layer. Figure 6-3 illustrates the training process of the proposed LSTM network. The trained LSTM network can be used to perform multi-step-ahead prediction of the compressor’s suction temperature. The procedure used to determine the optimal LSTM architecture as well as how to choose the optimal network parameters will be detailed in Section 6.4.

[image: ]
[bookmark: _Toc506214748]Figure 6‑3 Illustration of the use of the proposed LSTM network for time series prediction.
Multi-step-ahead Time Series Prediction
To perform multi-step-ahead predictions of the future suction temperature, the length of the input and output moving window is set to 24 time-steps in this study. In other words, each LSTM training sample contains a 24-long input vector and a 24-long output vector, and the prediction horizon is the same as the output window length, which is 24 future time steps. Compared to one-step-ahead prediction, this approach avoids the problem of repeating the forecast 24 times in order to perform a 24-hour-ahead prediction (using the previous forecast as LSTM’s input 23 times may lead to an accumulated prediction error and instability of the forecast) while providing the power to predict the entire daily (24 hours) suction temperature ahead at once. In addition, setting the prediction horizon to 24 time steps could provide site engineers with entire daily performance estimation of the compressor, which allows ample time for decision making and maintenance scheduling. Longer prediction horizons may provide site engineers with more reaction time for a severe fault predicted by the CVA model, but a longer prediction horizon will result in fewer available training samples for an LSTM network and therefore lower forecast accuracy given that we have limited historical data. Taking into consideration both aspects, the prediction horizon was set to 24 hours in this study.
After each prediction, the output window was slid by 24 steps, in effect creating a sequence of predictions of 24 time steps (see Figure 6-4).
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[bookmark: _Toc506214749]Figure 6‑4 Illustration of multi-step-ahead prediction.
[bookmark: _Toc506214398]Combining CVA and LSTM for Performance Estimation
[bookmark: _Hlk496958156]The proposed CVA-LSTM system for performance estimation of the centrifugal compressor comprises four main steps as shown in Figure 6-5: detecting and identifying incipient fault, training CVA-based faulty model, training-validating LSTM model and predicting performance. The role of each step is detailed as follows:
1. Step 1. Detecting and identifying incipient fault: Detect and identify incipient fault using a CVA-based fault detection model.
1. Step 2. Training CVA-based faulty model: Build and train a CVA-based state space model using data acquired during early stages of deterioration.
1. Step 3. Training-validating LSTM model: Build and train an LSTM network using historical suction temperature data. Predict future suction temperature values (under faulty operating conditions) using the trained LSTM model.
1. Step 4. Predicting performance: A validation data set that covers the entire degradation process is first obtained from the compressor. Then, the trained CVA model is fed with the same suction throttling valve set points used during the total duration of the validation data set. Meanwhile, the predicted suction temperature values by LSTM network are fed into the CVA model together with the suction throttling valve set points. (In reality, when a fault occurs, site engineers could predict suction throttling valve set points by looking at the production plan and predict suction temperature values using a trained LSTM model). The trained CVA model is used to predict system output variables for the given inputs. The performance of the model is evaluated by calculating the error between the predicted values and actual measured values in the validation data set. 

[image: ]
[bookmark: _Toc506214750]Figure 6‑5 Illustration of the proposed CVA-LSTM system for performance estimation of an industrial system under faulty operating conditions.      
        
[bookmark: _Toc506214399]Case Study
[bookmark: _Toc506214400]Data Acquisition
Centrifugal compressors are widely used in a large number of different compression applications in the oil and gas industry. These machines are equipped with a large variety of sensors to enable fully automated online supervision of various operating parameters. Moreover, the measured signals from different sensors can be stored and accessed through an e-maintenance system and can be used for diagnostic and prognostic purposes. 
In practice, fault data are typically scarce because very few safety-critical and expensive components are allowed to run to failure. If a fault occurs and the fault is not serious, it may be that machine operators choose to keep the machine running until repair facilities and spare parts are available at the plant. In such a case, the proposed CVA-LSTM method can be used to predict the impact of the fault on machine operation, plant safety and product quality before replacements and substitutes are available. The proposed method is applied to an operational industrial centrifugal compressor to predict the performance of the machine after a variable speed drive (VSD) fault occurs. This compressor is a one-cylinder, two-section, six-stage centrifugal compressor running at a large refinery in Europe (hereafter referred to as Compressor A). This compressor is driven by a variable-speed electric motor. For this study, all the data were captured at a sampling rate of one sample per hour by the machine’s condition monitoring system. Table 6-1 summarizes all of the measured variables for this compressor.
[bookmark: OLE_LINK83][bookmark: OLE_LINK82]As shown in Figure 6-6, the compressor is in healthy condition during the first 170 points of the time series. The VSD fault occurred at the 171th sampling point, and the fault affected many measured sensor signals, among which the most affected variables include shaft speed and suction pressure (see Figure 6-7 and Figure 6-8). Since the fault severity was not very critical, this machine was kept running until the end of the time series. After that time, site engineers removed the malfunctioned VSD and replaced it with a newly arrived VSD. 
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[bookmark: _Toc506214751][bookmark: _Hlk496889838]Figure 6‑6 Trend of five different performance variables (normalized) before and after the VSD failure.

[bookmark: _Toc498713032]

Table 6‑1Measured variables for compressor A
	ID
	Variable Name
	ID
	Variable Name
	ID
	Variable Name

	1
	Shaft Speed
	6
	Discharge Temperature
	11
	Journal Bearing 2 Vibration

	2
	Flow Meter
	7
	Suction Pressure
	12
	Journal Bearing 3 Vibration

	3
	Suction Throttling Valve
	8
	Discharge Pressure
	13
	Journal Bearing 4 Vibration

	4
	Actual Power
	9
	Total Driver Power
	14
	Thrust Bearing Vibration

	5
	Suction Temperature
	10
	Journal Bearing 1 Vibration
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[bookmark: _Toc506214752]Figure 6‑7 Trend of shaft speed after the VSD failure
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[bookmark: _Toc506214753]Figure 6‑8 Trend of suction pressure after the VSD failure

[bookmark: _Toc506214401]Fault Detection and Identification using a CVA-based Diagnostic Model
To evaluate the performance of the proposed fault diagnostic method, the data captured under healthy operating conditions (hereafter referred to as T1) as shown in Figure 6-6 was used as the training data for CVA diagnostic model, and the data captured throughout the degradation process (hereafter referred to as T3, see Figure 6-6) were used to validate the trained model. T1 includes 170 observations, and T3 contains 146 observations, which covers the entire fault degradation process. Figure 6-6 depicts the trend of five specific performance variables in data sets T1 and T3 (all sensor measurements were normalized in order to give a clear view of the trends for different variables in the training data set and the validation data set).
The numbers of time lags  and  were determined by calculating the autocorrelation function of the root summed squares of all variables in data set T1 against a confidence bound of ± 5%. The autocorrelation function indicates how long the signal is correlated with itself and thus can be used to determine the maximum number of significant lags. As shown in Figure 6-9, the sample autocorrelation analysis of the training data demonstrates that the maximum number of significant lags was 6. Therefore, the number of time lags  and  were set to 6 in this study. 
According to the literature [15], [141], different methods can be used to determine the number of states retained , among which those based on the Akaike information criterion (AIC) and the dominant singular values (SVs) in the diagonal matrix  are most commonly used. In this study, the optimum number of retained states was determined by considering the dominant SVs obtained from formula (5). As shown in Figure 6-10, the SVs were placed in descending order with a gradually decreasing trend, and setting the number of  based on these SVs will lead to an unrealistic high-order system. Moreover, the performance of fault detection in this study is not relevant to the value of  because both statistics ( and ) are used as the detection metrics. In other words, a fault that fails to generate a significant deviation in the canonical state space will be captured by the residual space. To select the optimal number of retained state  that gives the lowest false alarm rate, a data set containing 887 observations under the healthy operating conditions was used to test the trained CVA diagnostic model. A confidence bound of 99% was adopted for the calculation of the normal operating threshold during the testing process. The false alarm rate was calculated for different values for . The false alarm rate in this study was calculated by dividing the number of false detections by the length of the testing data. Figure 6-11 shows the false alarm rate against different values of  for the testing data set. For low values of system order , the false alarm rate is high because the information in the retained space is not able to fully represent the system dynamics, leading to a large number of  threshold violations. Meanwhile, to avoid the CVA model overfitting the training data, the value of q cannot be set too large, and  was finally adopted in this study to perform fault detection. Figure 6-12 shows the   and  statistics of the training data set T1 and the validation data set T3. The upper control limit for healthy operating conditions was calculated at the 99% confidence level. Both indicators detect the VSD fault at approximately the 172nd sampling point, which is one hour after the fault has occurred. The false alarm rate for the  and  statistics is 9.59% and 4.11%, respectively, indicating that the  statistic is more sensitive to the fault than the  statistic.

[image: ]
[bookmark: _Toc506214754]Figure 6‑9 Autocorrelation analysis of data set T1. Blue lines: upper and lower confidence bounds.
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[bookmark: _Toc506214755][bookmark: _Hlk487274880]Figure 6‑10 Singular values in matrix D.
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[bookmark: _Toc506214756]Figure 6‑11 False alarm rate for different values of retained state .
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[bookmark: _Toc506214757]Figure 6‑12 The (upper) and  (lower) statistics for training data set T1 and validation data set T3. Red dashed: thresholds for health indicators. Fault is detected after the 172nd sampling point (one hour after the VSD failure has occurred).

[bookmark: _Hlk512432333][bookmark: _Hlk496961802]Once a fault occurs in an industrial heavy-duty compressor, it is valuable to identify which components are most likely associated with the root cause of the malfunction. To identify the most fault-related variables for compressor A, a combined CVA-based 2-D contributions is displayed in Figure 6-13, where variable name is the vertical axis and sampling time is the horizontal axis. The combined contributions  used equal weights for  and  (). 
[bookmark: OLE_LINK143][bookmark: OLE_LINK146][bookmark: OLE_LINK88][bookmark: OLE_LINK86]After the VSD failure, the malfunctioned VSD could not maintain suction pressure of the compressor at a relatively constant level as it did before the failure occurred. Similarly, the malfunctioned VSD could not control the speed of the compressor as it did before the failure occurred. In other words, shaft speed and suction pressure will show large variations after a VSD failure and therefore can be used as two key indicators of a VSD failure for this compressor. As shown in Figure 6-8, the suction pressure decreased from 7.384 bar to 5.582 bar and remained unstable until the faulty VSD was replaced; meanwhile, the shaft increased from 11,110 rpm to 12,790 rpm and remained at a higher speed than that of normal operating conditions (see Figure 6-7). In Figure 6-13, both shaft speed and suction pressure are reported by the combined contribution plot as they show consistently strong bands of contribution during the degradation process. This information can be used by experienced machine operators to find the root cause of the fault. 

[image: ]
[bookmark: _Toc506214758]Figure 6‑13 Combined CVA-based 2-D contributions for identifying the VSD failure.

[bookmark: _Toc506214402]LSTM for Suction Temperature Prediction
In addition to fault diagnostics and identification, site operators may be more interested in how the system will behave under faulty operating conditions given the future compressor inputs and how the detected fault will affect the safety of plant operation, quality of product and power efficiency of the system. The future values of the manipulated system input variable (i.e., suction throttling valve position in this study) can be obtained by looking at the production schedule. However, the inlet gas temperature of the machine is largely determined by ambient temperature when the gas passes through long transmission pipelines to the compressor and is not a manipulated variable. To account for the impact of ambient temperature on a system’s performance under faulty operating conditions, LSTM was used in this study to forecast the magnitude of future inlet gas temperature based on historical data. 
With the aim of forecasting the values of suction temperature during the entire degradation process, the measured suction temperature signals before the failure time were used to train the proposed LSTM network. The data set for training contains 449 sampling points, as shown in Figure 6-14. The predicted suction temperature during the entire deterioration process was plotted against the actual measured temperature in Figure 6-14 as well. The predictive deviation at each time instance was plotted as vertical blue lines in order to show consistent over- and under-prediction, as well as a sense of the variance in the predictions. The procedures used to determine the LSTM network architecture as well as the optimal network parameters are detailed in the following subsections.
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[bookmark: _Toc506214759]Figure 6‑14 Predicted suction temperature (yellow) against actual measure suction temperature (red) during the entire degradation process (length of the predicted time sequence is equal to the length of data set T3). The training data set for the proposed LSTM network (blue) is also shown.

Determination of LSTM Network Architecture
[bookmark: OLE_LINK90][bookmark: OLE_LINK89][bookmark: _Hlk496958245]The proposed LSTM network consists of a sequence of 6 layers: an input layer, 3 LSTM hidden layers, a dense layer and an output layer. The LSTM hidden layers are used to model the relationships between past and future time series signals. The layers also allow the network to represent more complex models than possible without the hidden layers. The dense layer is used to change the dimensions of the output vectors from the previous LSTM layer and map the outputs into a final predicted time sequence. To determine the number of LSTM hidden layers , 10-fold cross-validation was performed on the training data (i.e., 449 suction temperature points measured before the VSD failure) and the mean square error (MSE) on the cross-validation set was calculated for different numbers of . The results are summarized in Table 6-2, and  resulted in the lowest prediction error on the cross-validation set. The results indicate that deeper network architecture helps LSTM understand complicated relationships between time series, allowing more accurate predictions. Meanwhile, the predictive accuracy was not improved obviously when the number of hidden layers was increased from 2 to 3. Based on the obtained results,  was adopted in this study for suction temperature prediction.

[bookmark: _Toc498713033]Table 6‑2 Cross-validation set performance (MSE, %) based on different numbers of LSTM hidden layers 
	Number of Neurons
	
	
	

	
	Test1
	Test2
	Test3
	Test1
	Test2
	Test3
	Test1
	Test2
	Test3

	128
	0.461
	0.482
	0.563
	0.557
	0.485
	0.549
	0.643
	0.625
	0.663

	256
	0.385
	0.477
	0.473
	0.451
	0.511
	0.514
	0.546
	0.603
	0.684

	384
	0.475
	0.504
	0.494
	0.455
	0.510
	0.509
	0.569
	0.662
	0.645

	512
	0.538
	0.435
	0.495
	0.467
	0.515
	0.517
	0.610
	0.655
	0.637

	640
	0.440
	0.577
	0.481
	0.517
	0.471
	0.502
	0.613
	0.660
	0.621

	768
	0.598
	0.511
	0.504
	0.542
	0.536
	0.507
	0.605
	0.544
	0.609

	896
	0.540
	0.539
	0.548
	0.506
	0.496
	0.507
	0.617
	0.566
	0.610

	1024
	0.479
	0.547
	0.533
	0.509
	0.514
	0.525
	0.639
	0.567
	0.617

	Average
	0.503
	0.507
	0.617


[bookmark: _Hlk496958273]Best result is in bold. The number of epochs was set to 5, and the number of units (neurons) in each LSTM layer was set to 256 during the experiments. Cross-validation was repeated 3 times for each number of LSTM hidden layers, and the averaged MSE over 3 replicates was used to determine the network’s final structure. The number of LSTM layers was chosen in the range of  because the computational cost of larger number of  will become huge.

Determination of LSTM Network Parameters
[bookmark: _Hlk496961967][bookmark: OLE_LINK94]In this section, the number of neurons in the LSTM layers  and batch size  were obtained by 10-fold cross-validation in order to obtain the optimal LSTM model. In this investigation,  was studied in the range of   and  was studied in the range of . The results of cross-validation are shown in Table 6-3. The best testing performance was  with  and . Therefore, ,  and  were adopted to predict the suction temperature of the compressor for the entire degradation process. To avoid overfitting, the number of epochs was set to 50 for the training process. The predicted suction temperature is shown in Figure 6-14.

[bookmark: _Toc498713034]Table 6‑3 Cross-validation set performance (MSE, %) based on different values of batch size  and number of neurons  in the hidden layers
	[bookmark: _Hlk496961988]Number of Neurons
	Batch Size

	
	128
	256
	384
	512
	640
	768
	896
	1024

	[bookmark: _Hlk496221366]128
	0.483
	0.486
	0.469
	0.516
	0.538
	0.526
	0.519
	0.467

	256
	0.460
	0.494
	0.487
	0.492
	0.548
	0.506
	0.499
	0.517

	384
	0.512
	0.503
	0.434
	0.471
	0.494
	0.437
	0.424
	0.520

	512
	0.461
	0.425
	0.494
	0.459
	0.494
	0.516
	0.468
	0.472

	640
	0.468
	0.494
	0.496
	0.434
	0.486
	0.500
	0.511
	0.579

	768
	0.501
	0.482
	0.472
	0.548
	0.570
	0.547
	0.557
	0.526

	896
	0.475
	0.443
	0.489
	0.537
	0.457
	0.539
	0.527
	0.481

	1024
	0.435
	0.485
	0.466
	0.445
	0.523
	0.528
	0.511
	0.590


Best result is in bold. The results are based on the configuration of 3 LSTM hidden layers and 1 fully connected dense layer. The number of epochs was set to 5, and each value represents the mean of three replicates.

[bookmark: _Toc506214403]Combining CVA and LSTM for Performance Estimation
Following the steps described in Section 6.3.4, the training data set T2, which was obtained during the early stages of deterioration, was used to build and train a CVA-based state space model as per Equations 6-1 to 6-3. Then, the trained model was fed with two input sequences: 1. suction temperature predicted by the LSTM network (i.e., the predicted time series shown in Figure 6-14); 2. actual suction throttling valve position recorded during the entire degradation process (i.e., the length of this sequence is equal to that of the validation data set T3) to provide estimations of the system outputs for data set T3. Finally, the predicted outputs were compared with the actual system outputs measured in data set T3 to evaluate the performance of the model.
Determination of CVA-based State Space Model Parameters
Similar to the procedure described in section 3.2, the number of time lags  and b were calculated based on the autocorrelation analysis of the training data set T2, and  and  were set to 6. Then, T2 was used to build and train a CVA subspace model. To determine the optimal number of the trained retained states , the trained CVA model was first used to predict system outputs for data set T2. The purpose of this validation process is to find the optimal value of  that minimizes the predictive error for T2. Two performance metrics—1) mean absolute error (MAE) and 2) mean absolute percentage error (MAPE)—were used in this study to evaluate the performance of the predictive model. Interested readers are referred to [165] for further information about the two metrics. The summed MAE and MAPE of all the output variables in T2 were plotted against different numbers of retained states  in Figure 6-15. The errors increase as the system order becomes larger, and  was finally set to 1 to obtain the optimal model that gives the highest predictive accuracy.
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[bookmark: _Toc506214760]Figure 6‑15 Summed prediction error (MAE and MAPE) for all output variables for different values of .

Results and Discussion
Following the steps described in Section 6.3.4, data set T2 was first used to build and train a CVA-based state space model as per Equations 6-1 to 6-2. Then, the trained model was fed with two input sequences: 1. suction temperature predicted by the LSTM network; 2. actual suction throttling valve set points used throughout the degradation process to provide estimations of the system outputs for data set T3.  Figures 6-16 to 6-20 show the prediction results for some of the most significant variables of T3. Large deviation from the actual measurements at the beginning of each prediction was observed. This error resulted from the inaccurate initial state estimation, which can be compensated for by the model rapidly. Other than the inaccurate initial predictions at the very beginning of each time sequence, the estimated values are close to the actual measurements, indicating that the developed model is able to predict system behavior under faulty operating conditions based on expected future suction valve set points and predicted future suction temperature accurately. Table 6-4 shows the precision analysis for the prediction error of the proposed CVA-LSTM model. The results demonstrated the superior performance of the proposed model and proved that the model can be used to accurately predict system behaviour under slowly evolved faulty conditions. Site engineers could use the predicted key performance variables to plan maintenance with the aim of minimizing plant power consumption and expected breakdown costs as well as maximizing product quality and the safety and reliability of the plant. The precision analysis for the prediction error of the proposed CVA-LSTM model (i.e. two system inputs: suction throttling valve set points and suction temperature) and the traditional CVA method (i.e. only one system input: suction throttling valve set points) can be found in appendix C.
[image: ]
[bookmark: _Toc506214761]Figure 6‑16 Predicted shaft speed under faulty operating conditions by CVA-LSTM model. The predicted shaft speed can be used to estimate the extra power cost caused by the VSD failure.  
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[bookmark: _Toc506214762]Figure 6‑17 Predicted discharge temperature under faulty operating conditions by CVA-LSTM model. The predicted discharge temperature can be used to estimate the impact of the VSD failure on product quality.  
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[bookmark: _Toc506214763]Figure 6‑18 Predicted actual power under faulty operating conditions by CVA-LSTM model. The predicted actual power can be used to estimate the extra power cost caused by the VSD failure.  
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[bookmark: _Toc506214764]Figure 6‑19 Predicted suction pressure under faulty operating conditions by CVA-LSTM model. The predicted suction pressure is related to plant safety since a low-pressure alarm will be triggered when suction pressure is lower than 6 bar for this compressor.
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[bookmark: _Toc506214765]Figure 6‑20 Predicted discharge pressure under faulty operating conditions by CVA-LSTM model. The predicted discharge pressure can be used to estimate the impact of the VSD failure on product quality.  

[bookmark: _Toc498713035]Table 6‑4 Prediction errors for different performance variables
	Variable ID
	1
	2
	4
	6
	7
	8

	MAPE 
	0.00241
	0.01168
	0.01906
	0.00445
	0.02243
	0.01059

	MAE
	30.5836
	0.0068
	29.2905
	0.6285
	0.1436
	0.1981

	Variable ID
	9
	10
	11
	12
	13
	14

	MAPE 
	0.01888
	30.22971
	4.56105
	0.33150
	0.29680
	0.40970

	MAE 
	29.0465
	4.0882
	4.2302
	4.2503
	4.5429
	4.1582



[bookmark: _Toc506214404]Conclusion for CVA-LSTM-based fault diagnosis and performance estimation
[bookmark: _Hlk496962354][bookmark: _Hlk496962372][bookmark: _Hlk496962222]In this study, condition monitoring data acquired from an operational industrial centrifugal compressor were used to test the capabilities of CVA for fault detection and identification. In addition, CVA combined with LSTM were applied for the first time to predict the behavior of the system under faulty operating conditions for the expected future suction throttling valve set points. The VSD failure in data set T3 was successfully detected by  and  health indicators within a short detection time. Contribution plots based on both the canonical state space and the residual space information were utilized to identify the root cause of the failure. Condition monitoring data obtained from an incipient fault were used to train a CVA subspace model. The trained CVA model was then used to provide estimations of the system’s performance after the fault had occurred for the specified future suction throttling valve set points. Although large oscillations were observed in the initial estimations, the average prediction error was low, proving that the model is able to represent the system dynamics under faulty conditions. The predicted key performance variables can be used to plan maintenance with the aim of minimizing plant power consumption and maximizing product quality and the safety and reliability of the plant. The proposed model is based on the assumption that the faults evolve slowly enough and the correlation between system inputs and outputs will not change rapidly during the entire degradation process so that the estimation routine can track them properly.
The combined method takes into account the impact of ambient temperature on a system’s performance under faulty operating conditions and thereby allows both the environmental factors and the human interventions to be factored in when predicting the system’s future behavior. The information provided by the proposed method can be used by site engineers to estimate the impact of the fault on the operational process and develop appropriate production plans and optimal maintenance strategies, making plant operations more safe, productive and profitable.





[bookmark: _Toc506214405]Conclusions and Future Work
[bookmark: _Toc506214406]Summary of Thesis
In summary, the work performed in this thesis can be divided into three parts:
· A literature review on diagnosis and prognostics and various multivariate diagnostic and prognostic techniques.
· The development of nonlinear diagnostic methods and predictive state-space models.
· The evaluation of the developed monitoring techniques using condition monitoring data captured from operational industrial rotating machines
Chapter 2 reviewed the multivariate diagnostic and prognostic models for rotating machines. Multivariate monitoring algorithms, such as PCA, PLS, DPCA, DPLS and CVA, are widely used for monitoring dynamic processes due to the challenges of building first-principle models and the availability of a large volume of data. The superiority of CVA over the standard multivariate methods when applied to nonstationary systems operating under variable conditions has been widely reported. This method has been used for process health monitoring using experimental data and computer-simulated data. The review identified the lack of CVA application in large-scale complex industrial systems; consequently, the application of CVA for fault detection and identification using condition-monitoring data captured from an operational gas turbine and a compressor was presented in Chapter 3. The review of the prognostic methodologies in Chapter 2 indicates the following: 1) the implementation of the models reviewed remains in the nascent stage, 2) prognostic models that better adapt to continuously changing operating conditions during the degradation process must be developed, and 3) additional work is required to develop methods that use less run-to-failure data for prognostic analysis. Moreover, the performance of these techniques is far from being ideal, mainly due to the challenges associated with data-driven condition monitoring, such as non-linear system behaviour, non-Gaussian distributions, the presence of time-dependency, variable operating conditions and process dynamics. The capabilities of CVA appear to meet industrial requirements. Therefore, Chapters 4 to 6 explored the capacity of CVA to forecast system performance under varying operating conditions and faulty conditions. 
In Chapter 3, condition-monitoring data acquired from two operational rotating machines were used to test the capabilities of CVA for fault detection and identification. Fault detection was implemented by comparing the values of  and  statistics with pre-determined thresholds. The faults were successfully detected by both health indicators. In addition, combined CVA-based contribution plots were used to identify the variables that are most likely related to the specific fault. The results indicated that the 2-D contribution plots can clearly show the contributions of different process variables over the entire fault propagation process and can provide insight into the root causes of the faults than 1-D contribution plots. A consideration for future work is to alleviate the smearing effect and reduce the number of reported faulty variables, thereby allowing for more accurate fault identification. In addition, it is recommended to develop a diagnostic model that can detect faults before the occurrence of the faults. 
[bookmark: OLE_LINK36]One of the most critical aspects of CBM is the provision of accurate performance estimation after the appearance of faults to allow this information to be used to establish an optimal maintenance scheduling that minimizes the maintenance costs. In Chapter 4, condition-monitoring data acquired from two operational gas turbines were used to test the capabilities of CVA to estimate performance deterioration and predict the behaviour of the system after a fault has been detected. The first gas turbine was operated under healthy but time-varying conditions. The results indicated that CVA can effectively capture the system dynamics for large-scale complex rotating machines. The second engine was operated under faulty operating conditions. The residual between the estimations assuming healthy operation and actual measurements can be used by site engineers to evaluate the degradation of the engine’s performance. The CVA model obtained using data captured from early stages of degradation can be used to predict the faulty evolution and evaluate how the system will behave after the appearance of a fault. The information provided by the proposed method can be used to achieve an optimal maintenance scheduling, with the aim of minimizing plant power consumption and maximizing product quality. A time-variant extension of the proposed model is expected to improve the monitoring performance when applied to a system whose physical characteristics change rapidly over time. 
[bookmark: OLE_LINK74]Due to the non-linear system behaviour and the presence of process dynamics, time-invariant CVA models may not be able to fully capture the dynamics of a system. Therefore, in Chapter 5, an adaptive CVA modelling tool to improve the predictive accuracy of traditional CVA methods was proposed. A variable forgetting factor was adopted to update model coefficient matrices, covariance and cross-covariance matrices according to the residual of model outputs. The proposed model can track rapid changes in system outputs due to the use of adaptive forgetting factor. The data used in Chapter 4 were used to test the validity of the proposed method. ACVA shows better performance than the CVA model and appears to be more sensitive to mechanical failures. This method can be used to provide site engineers with more reliable and robust performance estimation of systems operating under varying and abnormal conditions. 
[bookmark: _Hlk496993932][bookmark: OLE_LINK76][bookmark: OLE_LINK75]In Chapter 6, a dynamic process monitoring method based on CVA and LSTM was proposed. Condition-monitoring data obtained from an operational compressor were used to test the capacity of the proposed method for fault detection, identification and performance estimations. The combined method takes into account the impact of ambient temperature on a system’s performance under faulty operating conditions and thereby accounts for both environmental factors and human interventions when predicting the system’s future behaviour. This method can be used by site engineers to estimate the impact of the fault on the operational process and develop optimal production plans to make plant operations more safe, productive and profitable.
 The major contributions of this research are summarized as follows:
· [bookmark: OLE_LINK190][bookmark: OLE_LINK191][bookmark: OLE_LINK29]The evaluation of the capabilities of CVA for fault detection using data captured from complex industrial rotating machines and the study of the capacity of CVA for fault root-cause analysis.
·  Subspace identification models based on CVA for the provision of performance estimation under faulty operational conditions. 
· The development of adaptive CVA models to provide improved estimates of system behaviour under time-varying healthy conditions and slowly evolving faulty operating conditions.
· The combination of CVA and LSTM for multi-step-ahead prediction of a compressor’s behaviour after the occurrence of a fault. This method accounts for both environmental factors and human interventions in predictive maintenance. 

[bookmark: _Hlk505349538]In summary, CVA-based diagnostic approaches were developed in this study to facilitate maintenance procedures by enabling the detection of faults during their early development and the reliable identification of faulty components. System identification via CVA was applied to the condition monitoring data obtained from operational gas compressors and turbines to construct a model that can provide an estimate of the performance degradation of a system. Moreover, the developed adaptive CVA approach is able to improve the monitoring performance of the standard CVA models, enabling more accurate predictions of system behaviour under faulty conditions in cases where the fault evolves rapidly over time. Additionally, the proposed CVA-LSTM model is an effective attempt to extend the standard CVA to systems whose performances are largely affected by variations in environmental conditions. A systematic fault-detection, isolation and degradation prediction scheme can be developed using the proposed techniques, based on which a whole plant-wide process can be hierarchically monitored from the plant-wide level to the equipment level and to the variable level, and this monitoring information can be used to improve maintenance decisions and reduce unplanned downtime.

[bookmark: _Toc506214407]Future Work
The recommendations for the continuation of this research in future work are summarized as follows:
· The linear correlations employed in CVA may not be able to fully represent the associations between different variables when nonlinear relations exist. Hence, efforts should be made to explore the effectiveness and applicability of nonlinear extensions of the canonical variate analysis for condition monitoring and health management; in particular, those based on nonlinear transformations of the observed data using kernel principles should be explored.
· Although many real-life complex systems can be modelled via linear modelling approaches, linear approximations are only valid for a given input range. Future work should focus on including elements of nonlinearity and non-Gaussianity in state-space models to carefully model the underlying dynamics of a system. 
· This study focuses on the future prediction of a single manifestation of the system outputs, which can lead to difficulties when managing prediction uncertainties. The use of a probabilistic model can overcome this limitation, thereby allowing uncertainty to be incorporated in the results. Efforts will be made in future works to quantify the influence of uncertainty in the disturbance prediction on the performance estimations.
· In our study, the performance estimation procedure based on CVA was performed in a fast and stable manner. The estimation error was always relatively low, allowing an accurate estimation of all output variables under faulty operating conditions. However, the predicted system outputs cannot directly indicate the remnant life of the physical system. Additional work is required to combine a remaining useful life (RUL) predictive technique with the existing CVA-based state-space models, thereby allowing the estimation of the remaining useful lives of systems and real-time maintenance scheduling.
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Appendix A Summary of variables predicted by adaptive CVA and the CVA model from Chapter 5
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[bookmark: _Toc506214766]Figure 7‑1 Vibration level of journal bearing 2 under faulty operating conditions predicted by adaptive CVA and the CVA model
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[bookmark: _Toc506214767]Figure 7‑2 Vibration level of journal bearing 4 under faulty operating conditions predicted by adaptive CVA and the CVA model
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[bookmark: _Toc506214768]Figure 7‑3 Vibration level of thrust bearing under faulty operating conditions predicted by adaptive CVA and the CVA model
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[bookmark: _Toc506214769]Figure 7‑4 Discharge pressure under faulty operating conditions predicted by adaptive CVA and the CVA model
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[bookmark: _Toc506214770]Figure 7‑5 Readings of flow meter under faulty operating conditions predicted by adaptive CVA and the CVA model
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[bookmark: _Toc506214771]Figure 7‑6 Shaft speed under faulty operating conditions predicted by adaptive CVA and the CVA model
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[bookmark: _Toc506214772]Figure 7‑7 Suction pressure under faulty operating conditions predicted by adaptive CVA and the CVA model

[image: ]
[bookmark: _Toc506214773]Figure 7‑8 Total driver power under faulty operating conditions predicted by adaptive CVA and the CVA model 

Appendix B Summary of variables predicted by the CVA-LSTM model from Chapter 6
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[bookmark: _Toc506214774]Figure 7‑9 Predicted flow under faulty operating conditions by CVA-LSTM model.
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[bookmark: _Toc506214775]Figure 7‑10 Predicted total driver power under faulty operating conditions by CVA-LSTM model.
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[bookmark: _Toc506214776]Figure 7‑11 Predicted vibration levels of journal bearing 1 under faulty operating conditions by CVA-LSTM model.
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[bookmark: _Toc506214777]Figure 7‑12 Predicted vibration levels of journal bearing 1 under faulty operating conditions by CVA-LSTM model.
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[bookmark: _Toc506214778]Figure 7‑13 Predicted vibration levels of journal bearing 3 under faulty operating conditions by CVA-LSTM model.
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[bookmark: _Toc506214779]Figure 7‑14 Predicted vibration levels of journal bearing 4 under faulty operating conditions by CVA-LSTM model.


[image: ]
[bookmark: _Toc506214780]Figure 7‑15 Predicted vibration levels of thrust bearing under faulty operating conditions by CVA-LSTM model.


Appendix C Summary of the precision analysis for the prediction error of the proposed CVA-LSTM model and the traditional CVA method (overall, the prediction errors of CVA-LSTM are smaller than those of CVA)
	Variable ID
	1
	2
	4
	6
	7
	8

	MAE (LSTM+CVA)
	30.5836
	0.006778
	29.2905
	0.6285
	0.1436
	0.1981

	MAE (CVA)
	31.3981
	0.007452
	31.2653
	0.7923
	0.1513
	0.2092

	MAPE (LSTM+CVA)
	0.002406
	0.01168
	0.01905
	0.004451
	0.02242
	0.01059

	MAPE (CVA)
	0.002471
	0.01289
	0.02048
	0.005605
	0.02363
	0.01121

	Variable ID
	9
	10
	11
	12
	13
	14

	MAE (LSTM+CVA)
	29.0465
	4.0882
	4.2302
	4.2502
	4.5429
	4.1582

	MAE (CVA)
	30.9228
	4.7564
	4.8078
	4.6882
	4.8070
	4.3814

	MAPE (LSTM+CVA)
	0.01888
	30.2296
	4.5611
	0.3315
	0.2968
	0.4097

	MAPE (CVA)
	0.02023
	30.9796
	4.3121
	0.3512
	0.3051
	0.420023






















[bookmark: _Hlk505349588]Appendix D  and  fault-detection times and false-alarm rates for gas turbine A for different values of lags /
	Number of time lags /
	21
	22
	23
	24
	25
	26
	27
	28
	29

	Fault detection time ()
	254
	246
	252
	252
	252
	252
	250
	252
	252

	False alarm rate ()
	0.0172
	0.0625
	0.0174
	0.0174
	0.0174
	0.0174
	0.0178
	0.0174
	0.0152

	Fault detection time ()
	235
	235
	235
	235
	235
	235
	235
	235
	235

	False alarm rate ()
	0.036
	0.0348
	0.0365
	0.0333
	0.0333
	0.0348
	0.0365
	0.0399
	0.0365
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