Development of an environmentally benign and optimised biodiesel production process

PhD Thesis


Aboelazayem, O (2019). Development of an environmentally benign and optimised biodiesel production process. PhD Thesis London South Bank University School of Engineering https://doi.org/10.18744/LSBU.003293
AuthorsAboelazayem, O
TypePhD Thesis
Abstract

The challenges of reducing the world’s excessive dependence on fossil fuels and atmospheric accumulation of greenhouse gases have led to the development of alternative sustainable biodiesel. Recently, non-catalytic biodiesel production using supercritical technology has received a significant interest due to its numerous advantages including short reaction time, high yield of biodiesel, elimination of catalyst preparation and separation costs and its applicability for various feedstock.
This study has introduced an in-depth assessment for the valorisation of both low and high acid values waste cooking oils (WCO) into biodiesel using supercritical methanolysis. The effects of different process variables have been investigated including methanol to oil (M:O) molar ratio, temperature, pressure and time. Both transesterification and esterification reactions have been extensively studied. Different responses have been investigated for this study including overall biodiesel yield, glycerol yield and FFAs conversion. Response surface methodology (RSM) via Box-Behnken Design (BBD) and Central Composite Design (CCD) has been used to investigate the effect of the process variables and their interactions on the reaction responses. In addition, overall reaction kinetics for both transesterification and esterification reactions have been studied where both have been reported as pseudo-first order reactions. Thermodynamics of the reaction has been analysed to report the thermodynamic data of the reaction including Arrhenius constant and activation energy. The kinetic studies have resulted in 50.5 kJ/mol for transesterification reaction and 34.5 kJ/mol for esterification reaction.
Numerical and graphical optimisation have been employed to minimise the process conditions and to maximise the production of biodiesel where the optimal conditions of the low acidity WCO have been developed at M:O molar ratio of 37:1, reaction temperature of 253.5 oC, reaction pressure of 198.5 bar in 14.8 min reaction time for 91% biodiesel yield. However, for high acidity WCO the optimal conditions have been developed at M:O molar ratio of 25:1, reaction temperature of 265 oC and reaction pressure of 110 bar in 20 min for 98% biodiesel yield. Further, this work has developed a heat exchanger network (HEN) that has achieved the optimal process energy requirements based on Pinch method.

Year2019
PublisherLondon South Bank University
Digital Object Identifier (DOI)https://doi.org/10.18744/LSBU.003293
Publication dates
Print01 Feb 2019
Publication process dates
Deposited01 Jul 2019
Publisher's version
License
Permalink -

https://openresearch.lsbu.ac.uk/item/867w5

Download files

  • 377
    total views
  • 546
    total downloads
  • 5
    views this month
  • 4
    downloads this month

Export as

Related outputs

Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery via organic Rankine cycle (ORC)
Aboelazayem, O, Gadalla, M, Alhajri, I and Saha, B (2020). Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery via organic Rankine cycle (ORC). Renewable Energy. 164, pp. 433-443. https://doi.org/10.1016/j.renene.2020.09.058
Recent Insights into Lignocellulosic Biomass Pyrolysis: A Critical Review on Pretreatment, Characterization, and Products Upgrading
Zadeh, ZE, Abdulkhani, A, Aboelazayem, O and Saha, B (2020). Recent Insights into Lignocellulosic Biomass Pyrolysis: A Critical Review on Pretreatment, Characterization, and Products Upgrading. Processes. 8 (7), pp. 799-799. https://doi.org/10.3390/pr8070799
Design of an integrated process for biodiesel production using supercritical methanolysis: Simultaneous work and energy integration
Aboelazayem, O., Gadalla, M., Alhajri, I. and Saha, B. (2019). Design of an integrated process for biodiesel production using supercritical methanolysis: Simultaneous work and energy integration. 12th International Conference on Sustainable Energy & Environmental Protection (SEEP 2019). Sharjah, UAE 18 - 21 Nov 2019
Systematic multivariate optimisation of butylene carbonate synthesis via CO <inf>2</inf> utilisation using graphene-inorganic nanocomposite catalysts
Onyenkeadi, V, Aboelazayem, O and Saha, B (2019). Systematic multivariate optimisation of butylene carbonate synthesis via CO <inf>2</inf> utilisation using graphene-inorganic nanocomposite catalysts. Catalysis Today. https://doi.org/10.1016/j.cattod.2019.03.027
Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil
Aboelazayem, O, Gadalla, M and Saha, B (2019). Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil. Renewable Energy. 143, pp. 77-90. https://doi.org/10.1016/j.renene.2019.04.106
Waste cooking oil valorisation into biodiesel using supercritical methanolysis: critical assessment on the effect of water content
Umar, Y, Aboelazayem, O, Echresh, Z, Gadalla, M and Saha, B (2019). Waste cooking oil valorisation into biodiesel using supercritical methanolysis: critical assessment on the effect of water content. EUBCE 2019 – 27th European Biomass Conference and Exhibition. Lisbon, Portugal 26 - 31 May 2019
Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalyst
Saada, R, Aboelazayem, O, Kellici, S, Heil, T, Morgan, D, Lampronti, G and Saha, B (2018). Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalyst. Applied Catalysis B: Environmental. 226, pp. 451-462. https://doi.org/10.1016/j.apcatb.2017.12.081
Supercritical methanolysis of waste cooking oil for biodiesel production: Experimental assessment for evaluating the effect of free fatty acids content
Aboelazayem, O, Gadalla, M and Saha, B (2018). Supercritical methanolysis of waste cooking oil for biodiesel production: Experimental assessment for evaluating the effect of free fatty acids content. EUBCE 2018 – 26th European Biomass Conference and Exhibition Proceedings. Copenhagen, Denmark 14 - 17 May 2018
Non-catalytic production of biodiesel using supercritical methanol: a brief review
Aboelazayem, O, Gadalla, M and Saha, B (2018). Non-catalytic production of biodiesel using supercritical methanol: a brief review. 11th International Sustainable Energy & Environmental Protection Conference. Paisley, Scotland 08 - 11 May 2018
Greener synthesis of butylene carbonate via CO2 utilisation using graphene-inorganic nanocomposite catalysts
Onyenkeadi, V, Aboelazayem, O, Kellici, S and Saha, B (2018). Greener synthesis of butylene carbonate via CO2 utilisation using graphene-inorganic nanocomposite catalysts. GPE 2018 – 6th International Congress on Green Process Engineering. Toulouse, France 03 - 06 Jun 2018
Design and simulation of an integrated process for biodiesel production from waste cooking oil using supercritical methanolysis
Aboelazayem, O, Gadalla, M and Saha, B (2018). Design and simulation of an integrated process for biodiesel production from waste cooking oil using supercritical methanolysis. Energy. 161, pp. 299-307. https://doi.org/10.1016/j.energy.2018.07.139
Valorisation of high acid value waste cooking oil into biodiesel using supercritical methanolysis: Experimental assessment and statistical optimisation on typical Egyptian feedstock
Aboelazayem, O, Gadalla, M and Saha, B (2018). Valorisation of high acid value waste cooking oil into biodiesel using supercritical methanolysis: Experimental assessment and statistical optimisation on typical Egyptian feedstock. Energy. 162, pp. 408-420. https://doi.org/10.1016/j.energy.2018.07.194
A facile and greener synthesis of butylene carbonate via CO2 utilisation using a novel copper–zirconia oxide/graphene catalyst
Onyenkeadi, V, Aboelazayem, O and Saha, B (2018). A facile and greener synthesis of butylene carbonate via CO2 utilisation using a novel copper–zirconia oxide/graphene catalyst. The 16th International Conference on Carbon Dioxide Utilization (ICCDU XVI). Rio De Janeiro, Brazil 27 - 30 Aug 2018
Optimising biodiesel production from waste cooking oil using supercritical methanol
Aboelazayem, O, Gadalla, M and Saha, B (2017). Optimising biodiesel production from waste cooking oil using supercritical methanol. London South Bank University.
Biodiesel production from high acid value waste cooking oil using supercritical methanol: Esterification kinetics of free fatty acids
Aboelazayem, O, Abdelaziz, O, Gadalla, M, Hulteberg, C and Saha, B (2017). Biodiesel production from high acid value waste cooking oil using supercritical methanol: Esterification kinetics of free fatty acids. EUBCE 2017 – Proceedings of the 25th European Biomass Conference and Exhibition. Stockholm, Sweden 12 - 15 Jun 2017
Biodiesel production from waste cooking oil via supercritical methanol: Optimisation and reactor simulation
Saha, B, Aboelazayem, O and Gadalla, M (2017). Biodiesel production from waste cooking oil via supercritical methanol: Optimisation and reactor simulation. Renewable Energy. 124, pp. 144-154. https://doi.org/10.1016/j.renene.2017.06.076
Optimising biodiesel production from high acid value waste cooking oil using supercritical methanol
Aboelazayem, O, Gadalla, M and Saha, B (2017). Optimising biodiesel production from high acid value waste cooking oil using supercritical methanol. SEEP 2017 – Proceedings of the 10th International Conference on Sustainable Energy & Environmental Protection. Bled, Slovenia 27 - 30 Jun 2017
A comparative study on biodiesel production from waste cooking oils obtained from different sources using supercritical methanol
Aboelazayem, O, Gadalla, M and Saha, B (2017). A comparative study on biodiesel production from waste cooking oils obtained from different sources using supercritical methanol. Journal of Bioremediation & Biodegradation. 8 (5), pp. 56-56. https://doi.org/10.4172/2155-6199-C1-008
One-step production of biodiesel from high acid value waste cooking oil using supercritical methanol
Aboelazayem, O, Gadalla, M and Saha, B (2017). One-step production of biodiesel from high acid value waste cooking oil using supercritical methanol. 10th World Congress of Chemical Engineering (WCCE10). Barcelona, Spain 01 - 05 Oct 2017
An experimental-based energy integrated process for biodiesel production from waste cooking oil using supercritical methanol
Aboelazayem, O, Gadalla, M and Saha, B (2017). An experimental-based energy integrated process for biodiesel production from waste cooking oil using supercritical methanol. Chemical Engineering Transactions. 61. https://doi.org/10.3303/CET1761272
Optimisation of biodiesel production from waste cooking oil under supercritical conditions
Aboelazayem, O, Gadalla, M and Saha, B (2016). Optimisation of biodiesel production from waste cooking oil under supercritical conditions. Venice 2016 – Proceedings of the 6th International Symposium on Energy from Biomass and Waste. Venice, Italy 14 - 16 Nov 2016